![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Ayşegül Ağan
Full-Text PDF
XML 88 Views
DOI:10.17265/1934-7359/2025.07.005
Department of Architecture, Faculty of Architecture, Balıkesir University, 10040, Türkiye
The article examines the physical, petrographic, mineralogical, and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia. Six mortar samples collected from the structure were analyzed using advanced techniques such as acid loss, ignition loss, sieve analysis, physical analyses, polarizing and stereo microscope observations, SEM-EDS, XRD, and TGA. The mortars examined exhibit hydraulic properties. The hydraulic character of the mortars is mainly provided by brick dust and aggregates exhibiting pozzolanic activity. Acid loss and ignition loss analyses indicate that the binder-aggregate ratios vary between 1:1 and 1:3. The elemental and mineral composition of these mortars was analyzed using EDS and XRD, respectively. Analytical techniques revealed the presence of quartz, feldspar, muscovite, biotite, vaterite, and aragonite crystals. The results were supported by thermogravimetric analysis. This study provides important references for the formulation of compatible repair mortars to ensure the proper preservation of materials used in masonry walls of large-scale structures in similar geographical areas. It is intended that this study, based on the examination of mortar samples taken from the structure, will contribute to future research.
Masonry wall, Historical structure, building material, mortar, characterization.
Journal of Civil Engineering and Architecture 19 (2025) 349-359
doi: 10.17265/1934-7359/2025.07.005
[1] Lawrence, A.W. 1983. A Skeletal History of Byzantine Fortification, The Annual of the British School at Athens (ABSA) 78: 171-227.
[2] Lepage, J., D. 2002. Castles and Fortified Cities of Medieval Europe: An Illustrated History. London: McFarland & Company, Inc., Publishers.
[3] Munro, J.A.R., and H.M. Antony. 1897. “Explorations in Mysia”. The Geographical Journal. 9 (2):150-169.
[4] Wiegand, T. 1904. "Reisen in Mysien", Mitteilungen des Deutschen Archäologischen Instituts, Athenische Abteilung 29 : 254-291.
[5] Ramsay, W.M. 1890. The historical Gography of Asia Minor London: John Murray, Albemarle Street.
[6] Magie, D. 1950. Roman Rule in Asia Minor. New Jersey: Princeton University Press.
[7] Ousterhout, R. 2008. Master Builders of Byzantium, Pennsylvania: University of Pennsylvania Museum of Archaeology and Anthropology; Illustrated edition.
[8] Akarca, A. 1987. Şehir ve Savunması. Ankara:Türk Tarih Kurumu Yayınları.
[9] Vitruvius, P. 1960. The Ten Books on Architecture (first published in 1914. Edited by M. H. Morgan) New York: Dover Publications.
[10] Fletcher, S. B. 1905. History of Architecture on the Comparative Method (5. Edition), London: Bradbory, Agnew and Co.Ld. Pirinters.
[11] Adam, J.P. 1999. Roman Building: Materials and Techniques. London: Routledge.
[12] RILEM 25 PEM. (1980). Recommandations provisoires, Essais recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement. Matériaux et Constructions, 13 (3): 175–253. doi: https://doi.org/10.1007/BF02473564.
[13] Teutonico, J.M. 1988. A laboratory manual for architectural conservators. Rome, ICCROM Publishers.
[14] European Committee for Standardization (CEN). 2006. Natural stone test methods: Determination of real density and apparent density, and of total and open porosity [European Standard], Brussels, Belgium: EN 1936.
[15] Turkish Standard Institution (TSE). 2003. Natural stone test methods: Determination of water absorption at atmospheric pressure, Ankara,Turkey: TSE, TS EN 13755.
[16] RILEM. 2001. Recommendations of RILEM TC 167-COM: Characterisation of old mortars. COM-C1 Assessment of mix proportions in historical mortars using quantitative optical microscopy. Materials and Structure 34 (7) :387-388. doi: https://doi.org/10.1007/BF02482283.
[17] Güleç, A. And A. Ersen. 1998. Caharacterization of Ancient Mortars: Evaluation of Simple and Sophisticated Methods. Architectural Conservation 4 (1): 56-67. doi: https://doi.org/10.1080/13556207.1998.10785207.
[18] Bakolas, A., G. Biscontin, A. Moropoulou and E. Zendri. 1998. Characterization of structurel byzantine mortar by thermogravimetric analysis. Thermochimica Acta 312 (1-2): 151-160. doi: https://doi.org/10.1016/S0040-6031(98)00454-7.
[19] Moropoulou, A., A. Bakolas, and S. Anagnostopoulou. 2005. Composite materials in ancient structures. Cement and Concrete Composites 27 (2): 295–300. doi: https://doi.org/10.1016/j.cemconcomp.2004.02.018.
[20] Lanas J., J.L.P. Bernal, M.A. Bello and J.I.A. Galindo, 2004. Mechanical properties of natural hydraulic lime-based mortars Cement and Concrete Research 34 (12): 2191-2201. doi: https://doi.org/10.1016/j.cemconres. 2004.02.005.
[21] Moropoulou, A., A. Bakolas and K. Bisbikou. 1995. Characterization of ancient, Byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochimica Acta 269/270: 779–795. doi: https://doi.org/10.1016/0040-6031(95)02571-5.
[22] Ahunbay, Z., E. Gürdal, A. Ersen, et. al. 2003. Research on the characterization on deterioration of the stones the bricks and the Khorasan mortars of the Tower 4 (T4) of the land walls of İstanbul, Unpublished Final Report. lstanbul, Turkey.
[23] Güleç, A., S. Acun and A. Ersen. 2013. A Characterization Method for the Fifth-Century Traditional Mortars in the Land Walls of Constantinople, Yedikule. Studies in Conservation 50 (4): 295-306. doi: https://doi.org/10.1179/sic.2005.50.4.295.
[24] Kurugöl, S. and A. Güleç. 2012. Physico-Chemical, Petrographic, and Mechanical Characteristics of Lime Mortars in Historic Yoros Castle (Turkey). International Journal of Architectural Heritage Conservation 6 (3): 322-341. doi: https://doi.org/10.1080/15583058.2010.540072.
[25] Turkish Standard Institution (TSE). 2000. Methods of test for mortar for masonryPart 1: Determination of participle size distribution (by sieve analysis), Ankara,Turkey: TSE, TS EN 1015-1.
[26] Riccardi, M.P., M. Lezzerini, F. Caro, M. Franzini and B. Messiga. 2007. Microtextural and microchemical studies of hydraulic ancient mortars: Two analytical approaches to understand pre-industrial technology process. Journal of Cultural Heritage 8 (4): 350–360.doi: https://doi.org/10.1016/j.culher.2007.04.005.
[27] Ergenç, D. and R Fort. 2019. Multi-technical characterization of Roman mortars from Complutum. Spain. Measurement 147. doi: https://doi.org/10.1016/j.measurement.2019.106876.
[28] Pavia, S. and S. Caro A. 2008. An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Construction and Buildig Materials 22 (8) 1807-1811. doi: https://doi.org/10.1016/j.conbuildmat.2007.05.003.
[29] Balksten, K and B. M. Steenari. 2010. The Influence of Particle Size and Structure in Hydrated Lime on the Properties of the Lime Putty and Lime Mortar. International Journal of Architectural Heritage. 4 (2): 86-101. doi: https://doi.org/10.1080/15583050902822681.
[30] Akyol, Z. 1977. Balya madeni civarının jeolojisi. Jeoloji Mühendisliği Dergisi, 1 (3): 10-27.
[31] Duru M., Ş. Pehlivan, Y. Şentürk, F. Yavaş ve H. Kar. 2004. New results on the lithostratigraphy of the Kazdag Massif in northwest Turkey. Turkish Journal of Earth Sciences 13(2): 177-186.
[32] Böke, H., S. Akkurt., B. İpekoğlu and E. Uğurlu. 2006. Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research 36: 1115–1122. doi: https://doi.org/10.1016/j.cemconres.2006.03.011.
[33] Uğurlu Sağın, E., Duran H.E. and H. Böke. 2021. Lime mortar tehnnology in ancient astern Roman provinces. Journla of Archaeological Science: Reports 39: 841-849. doi: https://doi.org/10.1016/j.jasrep.2021.103132.
[34] Bakolas, A. G. Biscontin, A. Moropoulou and E. Zendri. 1995. Characterization of lumps in the mortars of historic masonry. Thermochimica Acta 269/270: 809–816. doi: https://doi.org/10.1016/0040-6031(95)02573-1.
[35] Roszczynialski, W. 2002. Determination of pozzolanic activity of materials by thermal analysis. Journal of Thermal Analysis and Calorimetry 70: 387–392. doi: https://doi.org/10.1023/A:1021660020674.
[36] Middendorf B, J.J. Hughes, K. Callebaut, G. Baronio and I. Papayianni. 2005. Investigative methods for the characterisation of historic mortars—part 1: mineralogical characterisation. Material and Structure 38:761–769. doi: https://doi.org/10.1016/j.culher.2007.04.005.
[37] Moropoulou, A., A. Bakolas and K. Bisbikou. 2000. Physico-chemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures. Construction and Buildig Materials 14 (1) 35-46.doi: https://doi.org/10.1016/S0950-0618(99)00045-8.
[38] Binda, L., A. Saisi and C. Tiraboschi. 2000. Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials, 14 (4): 199-233. doi: 10.1016/S0950-0618(00)00018-0.