![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Kagome Project: Physical and Numerical Modeling Comparison for a Post-formed Elastic Gridshell
Marc Leyral1, Quentin Chef2,3, Tom Bardout2, Romain Antigny2 and Alexis Meyer3
Full-Text PDF
XML 1260 Views
DOI:10.17265/1934-7359/2022.04.004
1. AMP Research Unit & Laboratory MAP-MAACC, ENSA Paris-La Villette, 144 Avenue de Flandre, Paris 75019, France
2. ENSA Paris-La Villette, Paris 75019, France
3. École Centrale-Supélec, Gif-sur-Yvette 91190, France
An elastic gridshell is an efficient constructive typology for crossing large spans with little material. A flat elastic grid is built before buckling the structure into shape, in active and post-formed bending. The design and structural analysis of such a structure requires a stage of form finding that can mainly be done: (1) With a physical model: either by a suspended net method, or an active bending model; (2) With a numerical model performed by dynamic relaxation. All these solutions have various biases and assumptions that make them reflect more or less the reality. These three methods have been applied by Happold and Liddell [1] during the design of the Frei Otto’s Mannheim Gridshell which has allowed us to compare the results, and to highlight the significant differences between digital and physical models. Based on our own algorithm called ELASTICA [2], our study focuses on: (1) Comparing the results of the ELASTICA’s numerical models to load tests on physical models; (2) The identification of the various factors that can influence the results and explain the observed differences, some of which are then studied; (3) Applying the results to build a full-scale interlaced lattice elastic gridshell based on the Japanese Kagome pattern.
Interlaced lattice, gridshell, timber, dynamic relaxation, numerical modeling, physical modeling, form finding, Kagome.
[1] Happold, E., and Liddell, W. 1975. “Timber Lattice Roof for the Mannheim Bundesgartenschau.” The Structural Engineer 53 (3): 99-135.
[2] Leyral, M., Ebode, S., Guerold, P., and Berthou, C. 2021. “Elastica Project: Dynamic Relaxation for Post-formed Elastic Gridshells.” In Proceedings of the IASS Annual Symposium, 23-27 August 2021, Surrey, U.K., pp. 1-16.
[3] Labbé, C. 2018. “Quoi de neuf/le gridshell (des jours meilleurs)?” Archistorm. (in French)
[4] Philippart de Foy, G. 1984. Les Pygmées d'Afrique centrale. Paris: Éditions Parenthèse. (in French)
[5] Douthe, C. 2007. “Étude des structures élancées précontraintes en matériaux composites: application à la conception des gridshells.” Ph.D., thesis, École Nationale des Ponts et Chaussées. (in French)
[6] Chebyshev, P. L. 1878. Sur la coupe des vêtements. Congrès de Paris: Association française pour l’avancement des sciences. (in French)
[7] Boisse, P. 1994. “Modèles mécaniques et numériques pour l’analyse non-linéaire des structures minces.” Ph.D., thesis, Université de Besançon. (in French)
[8] Bouhaya, L. 2010. “Optimisation Structurelle des Gridshells.” Ph.D. thesis, École Doctorale Science Ingénierie et Environnement. (in French)
[9] Ghys, E. 2011. “Sur la coupe des vêtements. Variation autour d'un thème de Tchebychev.” L'Enseignement Mathématique 57: 165-208. (in French)
[10] Barnes, M. R. 1999. “Form Finding and Analysis of Tension Structures by Dynamic Relaxation.” International Journal of Space Structures 14 (2): 89-104.
[11] Leyral, M. 2021. Faire Tenir—Structure et architecture, edited by de la Villette, C. Paris: Savoir Faire de L’Architecture. (in French)
[12] Rombouts, J. 2019. “Optimal Design of Gridshells.” Ph.D. thesis, Faculty of Engineering Science of Bruxelles.