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Featured Application: This study focuses on the evaluation of the critical buckling load for elastic gridshells by testing scale models 
or using dynamic relaxation. After discussing the differences between numerical and physical results at various scales, the study 
proposes to evaluate the resistance of certain gridshell typologies that cannot be reached numerically. The results can be used to 
design building covers or 1:1 pavilions made of elastic gridshells. 
 
Abstract: An elastic gridshell is an efficient constructive typology for crossing large spans with little material. A flat elastic grid is 
built before buckling the structure into shape, in active and post-formed bending. The design and structural analysis of such a 
structure requires a stage of form finding that can mainly be done: (1) With a physical model: either by a suspended net method, or 
an active bending model; (2) With a numerical model performed by dynamic relaxation. All these solutions have various biases and 
assumptions that make them reflect more or less the reality. These three methods have been applied by Happold and Liddell [1] 
during the design of the Frei Otto’s Mannheim Gridshell which has allowed us to compare the results, and to highlight the significant 
differences between digital and physical models. Based on our own algorithm called ELASTICA [2], our study focuses on: (1) 
Comparing the results of the ELASTICA’s numerical models to load tests on physical models; (2) The identification of the various 
factors that can influence the results and explain the observed differences, some of which are then studied; (3) Applying the results to 
build a full-scale interlaced lattice elastic gridshell based on the Japanese Kagome pattern. 
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1. Introduction  

Between 2020 and 2021 we carried out studies 
which enabled us to produce the ELASTICA tool [2], 
an ergonomic and open-source algorithm for the design 
and form-finding of post-formed elastic gridshells, for 
the verification of their structural integrity, and for 
editing fabrication and assembly plans. Then, we 
wanted to apply these results for the design and 
fabrication of a post-formed elastic gridshell with 
interlaced members. 

The numerical modeling of certain types of 
gridshells is very complex, due to their geometry, and 
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the reliability of the results is difficult to assess. This 
is the case, for example, of non-deformable 
membranes in their plane, three-dimensional patterns 
and interlaced members. 

We therefore decided to design this structure by 
testing physical models. The aim is to calibrate the 
tests using the numerical results of a “classic” 
gridshell, then to access the out-of-plane inertia of the 
interlaced gridshell and finally to extrapolate the 
results to scale 1. During the calibration phase, we 
were able to observe, analyze and study the various 
biases of the numerical and physical models, trying to 
explain why the results of the two types of models 
could diverge. We have deduced from this a set of 
recommendations and precautions to be applied to all 
types of elastic gridshell projects. 

D 
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Parts of the chapters may have been reproduced 
with permission from: Marc Leyral, Sylvain Ebode, 
Pierre Guerold, Clément Berthou; Elastica project: 
dynamic relaxation for post-formed elastic gridshells, 
In Inspiring the Next Generation-Proceedings of the 
International Conference on Spatial Structures 
2020/21 (IASS2020/21-Surrey), edited by: Alireza 
Behnejad, Gerard Parke and Omidali Samavati, 
published by University of Surrey, Guildford, UK, in 
August 2021 [2]. This paper is in continuation of this 
work. 

2. Elastic Gridshells 

2.1 Definition and Origins 

In architecture, a shell is a continuous thin structure 
with a curved surface. Its rigidity is related to its 
curvature (shape resistance). Thus, a gridshell is a 
structural lattice of bars forming a curved surface  
(Fig. 1).  

Labbé [3] classifies gridshells into two main 
groups:  
 “(...) those with pre-calculated members, both in 

their curvature and in their geometrical resolution but 
also in their ‘inactive-bending’ fixings, 
 and those known as “active-bending” which start 

from an initially flat grid, which connections are not 
fixed until after their assembling, once the structure is 
established in its architectural form”. 

The first category works in compression and is not 
the subject of this study. The elements in the second 

one, called elastic gridshells, are working in flexion 
and compression and have two main characteristics: 
 They are in active bending; the shape is given by 

the bending of straight elements maintained fixed. This 
condition is necessary to qualify a gridshell as elastic. 
 They are post-formed, which means that the grid 

is assembled flat, not braced. The thin and hinged 
elements form a deformable unit that is then flexed 
during the erection. This condition is not necessary to 
be part of elastic gridshells, however our study will be 
placed in this framework. 

The natural shape of an elastic gridshell depends on 
the initial grid and the displacements imposed on its 
support points. Let us take the simplest of them as an 
example: a simple flexible rod on the ends of which 
one pushes laterally. Initially the rod is in compression. 
Very slender, its equilibrium in compression by 
shortening quickly gives way to an unstable 
equilibrium in flexion: this is buckling. This can be 
generalized by describing a post-formed elastic 
gridshell as the post-buckling shape of a flat grid 
subjected to imposed displacements of its supports. 

Once the ends of the bars are in their final position, 
the bent gridshell, which is by nature very deformable, 
must be stabilized and rigidified by adding bracing to 
limit the deformation of the mesh and possibly by 
adding shear blocks to significantly increase its 
out-of-plane inertia (Fig. 2). The final grid is very 
rigid and can cover a large span without intermediate 
supports, and this with very little material. 

 

 

 
Fig. 1  Schematic typological definition of a gridshell (WIKIARQUITECTURA/Jean-Maurice Michaud/Sofia Colabella). 

                   Shell                              Town truss                       Elastic gridshell 
              CNIT, Paris, 19858            Pont de la Frontière, Potton, Quebec, 1896    Toledo Gridshell 2, Naples, 2014



Kagome Project: Physical and Numerical Modeling Comparison for a Post-formed Elastic Gridshell 

 

202

 
Fig. 2  Schematic typological definition of elastic gridshell (Credits: [2]). 
 

Many people around the world have built simple 
shelters based on this constructive process and using 
only local and natural materials: wood, plant fibers, 
leaves, etc. (Fig. 3). The lightness of the structure is a 

key advantage for their self-construction. Apart from a 
few exceptions like the Mongolian yurt, most 
vernacular gridshells are not post-formed: the stems 
are bent and fixed to the ground one after the other. 

 

 
(a) (b) 

 
 

 

  

(c) (d) (e) 
Fig. 3  Vernacular elastic gridshells: (a) Steps to build a lobembe according to Philippart de Foy [4], which is not a 
post-formed gridshell, (b) Post-formed gridshell: a Mongolian yurt (Smith Archive & Alamy Stock Photo), (c) Huts of the 
Haru Oms, Nama people (Exploring Africa/maison-monde.com), Huts of Xingu Indians (d) and Zulu tribes (e) 
(maison-monde.com, auroraphotos.com, John Lee, Wikimedia and africa.quora.com, Atom ref ZA 0375-N-N08935). 
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(a) (b) (c) (d) 

Fig. 4  (a) gridshell in Berkeley; (b) trial gridshell in Essen; (c) its model; (d) and its construction (from Ref. [1]). 
 

(a) (b) 
Fig. 5  The Mannheim Multihalle, exterior (a) (Image by Archive Frei Otto) and interior views (b) (Archive Frei Otto and 

Gabriel Tang). 
 

2.2 In Modern and Contemporary Architecture 

It was not until 1962 that this typology was 
highlighted by the work of Frei Otto who, using a 
study he had been carrying out since the late 1950s on 
lightweight shells from suspended net models, built a 
first trial model of an elastic gridshell during a visit to 
the University of Berkeley. Later in the same year, he 
built a wooden trial gridshell of 198 m² at the German 
Building Exhibition in Deubau, Essen (Fig. 4). 

Its height at the center point is 5 m. Two orthogonal 
layers of 60 mm × 40 mm Oregon pine elements are 
assembled to the floor by bolting at the knots, forming 
a super elliptical—or squircle—base with a mesh size 
of 48 cm. It was then lifted using a mobile crane and 
fixed to an edge beam driven into the ground. 

However, the first architectural project of large 
scale, is undoubtedly the Multihalle in the Herzogenried 
Park in Mannheim (Germany), built in 1975 for the 
Bundesgatenshau (Fig. 5). The winning architects of 

the competition, Carlfried Mutschler, Winfried 
Langner, and Heinz Eckebrecht, encountered 
difficulties in developing their idea of a free-form, 
airy and light structure: their proposal for large 
parasols suspended by helium balloons was rejected 
by the authorities. They then asked Frei Otto to help 
them, who became their engineering consultant.  

The project was designed using the suspended net 
method, to which we will come back later, then 
numerically calculated and tested. The grid built on the 
ground is composed of two interlaced orthogonal 
networks, each composed by a double layer of laths  
55 mm wide, forming a square mesh of 500 mm side. 
The knots are held by initially loose bolts to allow their 
rotation during erection, which was carried out using 
height-adjustable scaffold towers. The curved grid, 
still flexible at the time, is then blocked at the ends 
and braced to stiffen it. The western hemlock timber 
was shaped green and not dried because the flexibility 
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of the wood increases with its moisture content. 

3. Design Method for Elastic Gridshells: 
Form Finding and Verification 

Form finding can be carried out either experimentally, 
by means of hanging chain nets or active bending 
models, or numerically, for example through dynamic 
relaxation (RD). The work of Frei Otto, ARUP and 
Happold & Liddell [1], particularly on the gridshells 
of Essen and Mannheim, has been tested by all three 
methods and provides valuable data for assessing the 
relevance of each method. 

3.1 Design with a Physical Model 

3.1.1 Hanging Chain Nets Model 
Hanging chain nets model is simple to realize, 

although it requires sliding links to make sure that all 
the cables are tight (Fig. 6). Its use can be surprising, 
since the notion of an antifunicular—and therefore 
pure compression—is applied to model an object in 
flexion and compression. To confirm its relevance, in 
1973, Linkwitz digitally modeled the Mannheim 
model using photogrammetry. The calculations 

conducted by Happold took into account the bending 
and led to results similar to those of the hanging chain 
nets. 

The shape of a hanging chain (hyperbolic cosine) is 
determined only by its axial stiffness and a flexible 
rod (elastica) is determined both by its axial stiffness 
and by its bending stiffness. To claim that one is close 
to the other is therefore equivalent to saying that the 
bending stiffness of the flexible rod is negligible 
compared to its axial stiffness which is a commonly 
assumed hypothesis. 

Let us remember that Douthe [5] studied the 
differences between the funicular and the elastica 
shape according to the attack angle α at the basis and 
the loading rate p (Fig. 7). He carries out this study on 
a simple beam, a rectangular grid and a free-form grid. 
He concludes that the shape of the gridshell is almost 
funicular if the angle of attack α is less than 65° 
(optimum at 57.5°), which corresponds to a pL3/EI 
ratio below 65, confirming a posteriori the modelling of 
Mannheim by Frei Otto. Like Happold and Liddell [1], 
we can therefore conclude that “a funicular shape is an 
advantage but is not essential.” 

 

  
(a) (b) (c) (d) 

Fig. 6  Hanging chain net (a) and active-bending models (b) of the trial gridshell in Essen; (c) hanging chain net model of the 
Mannheim Multihalle; (d) zoom on the links (www.freiotto.com, Architekturmuseum TU München and from Ref. [1]). 
 

 
Fig. 7  (a) Diagram of the problem studied by Douthe [5]; (b) evolution of the distance to the hanging chain form with the 
angle α. 
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(a) (b) (c) 

Fig. 8  Load test by adding nails to the nodes of the Essen (a) and Mannheim (b) models; (c) loading tests with water-filled 
garbage cans (from Ian Liddell and from Ref. [1]). 
 

(a) (b) 
Fig. 9  Scalability tests on the section and stiffness of the material (a) and on the length of the element (b) (from Ref. [2]). 
 

3.1.2 Active Bending Physical Model 
In 1973, as Happold and Liddell [1] reminded us, 

“there was no previous engineering experience in this 
field.” To overcome this, his team first studied a simpler 
example by loading a PMMA (polymethyl methacrylate) 
model at the 1/16th scale of the trial gridshell in Essen 
and comparing the results with the data collected by 
the Warmbronn Workshop on the actual project. The 
tests were conducted with pinned or rigidly glued nodes 
and with or without bracing. The team found, and 
retained for the Mannheim project, that the addition of 
bracing on the diagonals of the lattice reduced deflection 
and increased the maximum nodal load causing buckling 
of the shell, but that the collapse was more sudden. 

An active bending model of the Multihalle was then 
fabricated in PMMA at 1/60th scale and tested in the 
same way. The buckling collapse load of the model 
was measured at 2.8 kg/m² without bracing and at  
12.5 kg/m² with bracing (Fig. 8). Happold and Liddell 
demonstrate that an extrapolation of the critical load is 
possible from a model to a real project by multiplying 

it by the ratio of EIxx/aS3 of the project and the model 
(EIxx is the out-of-plane bending stiffness, a the 
spacing of laths and S the gridshell span). 

From these studies and our previous experiences on 
the essential question of the extrapolation of the 
results from the model to the real project, we first 
concluded that:  
 The shape of a funicular and the shape of an 

elastic gridshell can be transposed from the model to 
the real project, regardless of the stiffness, the section 
and length of the material used (Fig. 9). 
 The buckling force is transposable but subjected 

to several measurement biases. 
 The shear and node stiffness are difficult to 

transpose, and this may reduce the relevance of the 
results of the previous point. 

3.2 Design with a Numerical Model by Dynamic 
Relaxation 

To overcome the inaccuracies of a form finding 
with a physical model, a numerical method is 
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generally necessary. We developed our own algorithm 
on Rhino + Grasshopper. Called ELASTICA, it is a 
complete, generic, open-source and ergonomic tool, 
usable by all, for form-finding, dimensioning, and 
optimization of elastic gridshells using dynamic 
relaxation. The theory of dynamic relaxation and the 
elaboration of ELASTICA algorithm are given in 
Appendix A. We will focus in the following on the 
analysis of the results obtained by physical and 
numerical models on a gridshell project.  

4. Numerical and Experimental Design 

4.1 Presentation of the Studied Gridshells 

The project takes place on the belvedere of the 

Butte du Chapeau Rouge Park, in the 19th 
arrondissement of Paris. Built from 1938 by Léon 
Azéma, then by his son Jean, the park is bordered by 
“Habitations à Bon Marché” (French housing at low 
rent during the first half of the 20th century) built with 
concrete and red bricks and offers a breathtaking view 
of the Saint-Denis plain below. 

It is in this context that we built in 2020 a first 
post-formed elastic gridshell of “classic” design, 
Elastica. In July 2022, we plan to complete the initial 
project by building a second post-formed elastic 
gridshell, Kagome, which will be different because it 
will be made by interlaced lattices in three directions 
(Figs. 10 and 11). 

 

 
Fig. 10  Elevation and masterplan of the studied gridshells. 

Elastica Gridshell 
(already built in 2020)

Kagome gridshell (to 
be built in 2022) 
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(b) 

(a) (c) 
Fig. 11  (a) Gridshell Elastica, 2020 (Credits: Salem Mostefaoui), main dimensions (b), and 3D du gridshell Kagome (c). 
 

 
Fig. 12  Methodology developed for the design of the Kagome gridshell. 
 

4.2 Issue and Methodology 

Issue: Kagome is not directly accessible to 
numerical calculation with the ELASTICA algorithm 
(Fig. 12) because: 

(1) It is already braced when built flat (because of 
the three-direction pattern). There is therefore no 
movement possible between the lattices in plan, and 
this is true from the erection phase to the loading 
phase. 

Making a 1:10 physical model of Elastica 

Comparing the load test results with the results of the ELASTICA 
algorithm for a 1:10 version of the Elastica project 
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(2) The evaluation of the out-of-plane inertia is 
complicated by the lathing in three directions and the 
method of assembly by interlacing the lattices. 

4.3 Consolidation Phase 

4.3.1 Numerical Calculation of the Elastica Project 
Using ELASTICA Algorithm 

Load assumptions (nodal loads): 
 Service Limit State: for deflections’ calculation. 

However, as the pavilion is temporary, no limit is 
imposed on this serviceability criterion and creep in 
timber is neglected.  

1.00 G = 1.26 kg  
1.00 G + 1.00 W + 0.60 S = 5.97 kg  
 Ultimate Limit State (ULS): a safety criterion: 

loads combinations for stress and surface’s buckling 
verifications. 

1.35 G = 1.70 kg  
1.35 G + 1.50 W + 1.05 S = 9.09 kg  
A safety factor on the results of the calculations 

considering various uncertainties (variations in modulus 
of elasticity E—due to natural inhomogeneity, moisture 
and creep—accuracy of shape of shell, variations   
in loading, accuracy of computer model and 
assumptions, nature and significance of buckling 
collapse, consequences of failure) of 3.46 has been 

applied on the ULS. 
Buckling limit load of the surface: predominant ruin 

mode for gridshells. To determine the critical buckling 
load, we proceeded by dichotomy on loads in the 
ELASTICA algorithm. We tested all the main design 
parameters: lathing type (single layer or double layer), 
the use or not of bracing, the use or not of shear blocks 
(cf. Table 1 and Fig. 14). To interpret these results, we 
compared them with those obtained by model and 
numerical modelling by Happold and Liddell [1] for 
the Mannheim Multihall (Fig. 13 and Table 2). 

According to Happold and Liddell, all other things 
being equal, the use of bracing on double lathing 
increases the critical load by a factor of between 1.60 
and 4.44. Furthermore, we can predict that the 
addition of shear blocks will increase the critical 
buckling load by a factor of about 13, determined by 
the ratio of inertias with (26bh3/12) and without 
(2bh3/12) these blocks. As for the results of our 
modeling of the Elastica project, we can conclude that, 
all other things being equal, buckling resistance is 
increasing: 

• By a factor of 2.00 to 2.02 by designing a double 
layer grid. 

• By a factor of 1.81 to 1.83 adding bracing.  
• By a factor of 11.09 to 12.29 adding shear blocks. 

 

Table 1  Parameters of the ELASTICA algorithm for the Elastica project. 

Input data Symbol Value Unit Mechanical parameters Symbol Formula Unit 
Lath width b 0.045 m 

Surface 
Simple layer grid 

A 
bh 

m2 
Lath height h 0.012 m Double layer grid 2bh 
Initial mesh length L0 0.5 m Nodal mass m Vρ+ma kg 
Mass of the connecting 
element ma 0.4 kg 

Inertia 

Simple layer 

I 

bh3/12 

m4 Timber density ρ 500 kg/m3 Double layer without shear 
blocks 2bh3/12 

Timber modulus of elasticity E 11,500 MPa Double layer with shear blocks 26bh3/12
    Axial stiffness Ra EA/L0 MN/m
    Bending stiffness Rf 2EI/L03 MN/m
 

 
Fig. 13  Kinematics of gridshell’s global buckling when nodal loads exceed critical load (from Ref. [2]). 
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Table 2  Critical buckling loads for Elastica and Mannheim gridshells. 

Layer Bracing Shear blocks Critical nodal load Elastica  
(kg at each node)***

Critical nodal load Mannheim 
(kg/m2)*** 

Simple 
no n/a 1.05 3.8** 
yes n/a 1.90 Non-evaluated 

Double 

no no 2.10 63***/100** 
no yes 25.80 - 
yes no 3.85 100*/160**/280*** 
yes yes 42.70 - 

* Results of the numerical model. 
** Extrapolated predictions based on the Essen model. 
*** Results extrapolated on the basis of the Multihall model. 
 

 
Fig. 14  Principle of increasing inertia by connecting the layers with shear blocks (from Ref. [2]). 
 

These results correlate with our theoretical 
predictions and with Happold and Liddell’s analyses. 
We also wished to compare them with the formula 
proposed by Douthe [5] who believes that “in order to 
obtain an expression of the critical pressure pcr that 
will cause the shell to collapse, it is assumed that this 
load is close to that which causes the instability of an 
equivalent cylindrical shell subjected to hydrostatic 
loading, i.e. of the type: pcr = 3EI/R3” (I is here the 
inertia per unit of length). The proximity to the results 
on the three designs tested (cf. Table 3) – the radius of 
curvature, 2.4 m, is measured at the median 
curvilinear position – shows a correlation between the 
buckling of a gridshell and that of a cylindrical shell, 
giving an a priori validation of the hypothesis. 

We concluded from this studie that Elastica should 
be a double-layered gridshell with bracing and shear 
blocks (Fig. 15). 

4.3.2 Loading Tests on a 1:10 Physical Model of 
Elastica 

Following the studies described so far, the Elastica 
gridshell was built in September 2020. The initial 

objective of our research in 2022 was to theorize the 
extrapolation of these results for the design of 
gridshells with different lathing such as the Kagome 
gridshell. 

However, during the development of the 
ELASTICA tool, the Covid-19 prevented physical 
meetings of the team and studies on real models could 
not be carried out. In 2022, we therefore decided to 
check the validity of our digital tools upstream by 
comparing them to load tests on 1:10 scale models 
(Fig. 16). 

Let us recall that during the studies of the 
Mannheim Multihalle by Happold and Liddell [1], the 
buckling collapse load of a physical model was 
measured at 2.8 kg/m² without bracing and at 12.5 
kg/m² with it. An extrapolation of the critical load 
being possible from a model to a real project by 
multiplying it by the ratio of the EIxx/aS3 of the project 
and the model (Ixx being the out-of-plane inertia, a the 
spacing of the lattices and S the span of the gridshell), 
the structure’s collapse load is thus assessed at 63 kg/m² 
for double lathing without bracing and at 280 kg/m² 
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Table 3  Critical buckling loads by the ELASTICA algorithm and the formula of cylindrical shells. 

Layer Bracing Shear blocks Critical nodal load 
by modelling (kg)

Critical nodal load calculated 
with pcr = 3EI/R3 (kg) 

Simple no n/a 1.05 1.02 

Double 
no no 2.10 2.05 
no yes 25.80 26.71 

 

 
 

 
Fig. 15  Synthesis of the project loads and critical buckling loads according to the different possible designs, and details of 
the Elastica gridshell: our study shows that the expected loads on the Elastica gridshell require a double lath design with 
bracing and shear blocks. 
 
Table 4  Comparison between the numerical and experimental results on the post-formed elastic gridshell Elastica in its 
version with simple lathing and without bracing. 
G01: Elastic gridshell with simple lathing and without bracing 

Parameters Model 1:10  Project 
Radius of curvature at the center R 0.24 m 2.40 m 
Lattice section b×h 10 mm × 1 mm  50 mm ×12 mm  
Number of nodes by m² 400 4 
Gridshell span S/distance between lattices a 0.356 m/50 mm  3.56 m/500 mm  
Timber elastic modulus 10,200 MPa 11,500 MPa 
 Scale model 1:10 Real project 1:1 

 Load test on the 
physical model 

Numerical 
simulation (RD)

Comparaison to 
cylinder shells 

Extrapolation by 
upscaling 1:10 
result 

Comparaison to 
cylinder shells  

Numerical 
simulation (RD)

Buckling critical load 0.027 kg (0) 0.011 kg (0) 0.011 kg (1) 2.80 kg (2) 0.92 (1) 1.05 kg (0) 
Lattice inertia Ixx 2.358 mm4 (1) 0.83 mm4 21,468 mm4 7,200 mm4 
Inertia by length unit I 0.047 mm4/mm (1) 0.017 mm4/mm 42.9 mm4/mm 14.4 mm4/mm 
(0) By direct measure (physical model) or by dichotomy (using ELASTICA algorithm). 
(1) Buckling critical load of a cylindric shell under hydrostatic load: pcr = 3EI/R3. 
(2) Extrapolated using the EIxx/aS3 between the model and the project. 

Double layer only 2.10 kg Simple layer only
1.05 kg

Double layer + bracing 3.85 kg 

Double layer  
+ shear blocks  

25.8 kg

Double layer + bracing 
+ shear blocks 

42.7 kg

Simple layer + bracing 1.90 kg 

Self-weight 
1.26 kg 

SLS Combination 
5.97 kg 

Supported structure: 0 kg 

ULS Combination
9.09 kg 

ULS Combination with 
security factor 

31.45 kg 

Nodal load (kg)
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(a) 

(b) 
Fig. 16  Buckling kinematics predicted by ELASTICA (a) and on a 1:10 model of the Elastica project (b) at approximately 
35%, 80%, 90% and 99% of their respective critical buckling load. 
 

with it. However, numerical calculations predicted are 
100 kg/m². The study attributes the difference, a factor 
of 2.8, to the non-variability of scale of the stiffness in 
shear or to a greater stiffness of the nodes of the scale 
model. 

4.3.3 Conclusion of the Consolidation Phase 
The results of the “calibration” test show that the 

critical buckling load of the scale model is 2.48 to 
2.53 times greater than anticipated by the calculation 
via the dynamic relaxation simulation (Table 4). This 
non-negligible ratio is quite close to that observed by 
Happold and Liddell on Mannheim (2.80). 

To try to understand it, let us come back to the 
reflections of Happold and Liddell [1] on the 
extrapolation of the results on a scale model. The 
authors identified several properties of the structure 
“which define and control its behaviour. [They] are 
listed as follows:  

S = Span. If the model is geometrically scaled then 
its size can be represented by a typical dimension, say 
the span 

EIxx/a = The out of plane bending stiffness of the 
surface a per unit length (a = spacing of laths)  

EIyy/a3 = [The in-plane bending stiffness] is 
proportional to the contribution of the timber members 
to diagonal stiffness, if the joints between timber 
members are rigid 

EA/a is the axial stiffness along the timber members 
per unit length 

E’A’/ka = is proportional to the contribution of the 

ties to the diagonal stiffness ([…] ka being the tie 
spacing)”. 

List to which is added a contribution related to the 
slip per unit force of each node. 

We then undertake the following reasoning in order 
to determine the parameters that seem to us to be the 
most significant in their contribution to the differences 
observed: 

As “the deformation of the grid shell is mainly due 
to out-of-plane bending and diagonal distortions of the 
grid squares [and] if the diagonal stiffness is much 
less than the axial stiffness” [1], we will consider as 
negligible the contribution of the axial stiffness of the 
lattices with respect to the out-of-plane bending 
stiffness. 

As the tested gridshell is designed without bracing, 
the contribution of the bracing elements’ axial 
stiffness E’A’ has no place in the reflection. 

In agreement with Happold and Liddell, we will say 
that if the bracings have a very high axial stiffness, the 
contribution of the stiffness in plan is negligible. 
However, the tested gridshell had no bracing. 

We therefore identify at this stage the two 
parameters on which we will focus our evaluation: 

(1) Semi-rigid nodes. The contribution of the nodes 
which are modeled in dynamic relaxation as perfectly 
articulated in the plane whereas they in fact have a 
certain stiffness due to the tightening of the assembly 
and the friction induced by the curvature of the 
lattices. 
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To evaluate this parameter, we will: 
 Carry out loading tests on braced models, 

because the blocking of the deformation of the mesh 
induced by the axial stiffness of the braces, if it is 
large enough, should make the numerical and physical 
results converge. 
 Modify the ELASTICA algorithm to take into 

account a spring torque in rotational friction at each 
node, compare the results obtained with loading tests 
on models at 1:10 and 1:2 scales. The contribution of 
friction, which tends to fictitiously increase the 
extrapolated critical load, should decrease with the 
increase of the scale of the physical model. 

(2) In-plane bending stiffness. Moreover, 
considering this nodes’ rotational stiffness implies a 
possible mobilization of the in-plane bending stiffness 
of the lattices, since it allows the deformation by 
bending of the elements inside the local plane of the 
surface, which is only possible if the nodes are 
semi-rigid (Fig. 17). To analyze this contribution, we 
will modify ELASTICA to take into account a biaxial 
bending of the timber elements. 

In addition, each model, numerical or physical, 
includes a set of biases, the nature of which should be 
listed and, if possible, the deviations they may cause in 
the result should be assessed. These are mainly geometric 
imperfections and model loading imperfections, which 
are all the more important as the model is reduced. We 
will devote part of our analysis to them. 

4.4 Recalibration Phase 

4.4.1 Loading Tests on a 1:10 Scale Model with 
Loose Connections 

In order to reduce as much as possible the 
contribution of the stiffness of the nodes 
and—possibly—of the bending in the plane of the 
lattices, we carried out a new test on the 1:10 model, 
loosing the nodes as much as possible. The results of 
this test give a critical buckling load of the model at 
0.0177 kg per node, i.e. a deviation of 1.61 to 1.65 
with the numerical predictions. A preliminary result 
motivates us to study more precisely the contribution 
of the rotational stiffness of the connections and that 
of the in-plane bending stiffness of the lattices in the 
evaluation of the critical load of the tests. 

4.4.2 Loading Tests on a 1:10 Scale Model with 
Bracings 

In order to go further in this reflection, we carried 
out a loading test on a 1:10 braced model (Fig. 18). If 
our assumption is correct, and since the axial stiffness 
per unit length of the braces E’A’/ka is large enough, 
the possible contributions of the rotational stiffness of 
the nodes and the out-of-plane bending stiffness of the 
chords should be negligible. 

The results of this experiment show a difference of 
only 1.5% between the physical model (0.0182 kg 
per node) and the numerical model (0.0185 kg per 
node). 

 

  
(a) (b) 

Fig. 17  (a) Hinged nodes; (b) semi-rigid nodes: bending in the plane of the lattices is only possible if the nodes are 
semi-rigid. 



Kagome Project: Physical and Numerical Modeling Comparison for a Post-formed Elastic Gridshell 

 

213

  
Fig. 18  Loading tests on a 1:10 scale model with bracings (single layer). 
 

4.4.3 Preliminary Outcomes 
These results tend to confirm our hypotheses on the 

contribution on the critical load of buckling of the 
rotational stiffness of the nodes and—possibly—of the 
in-plane bending stiffness of the timber lattices in the 
case of an unbraced gridshell. However, these results 
should be considered with great caution at this stage 
because: 
 The number of trials is very low. 
 At this scale, the biases linked to geometric 

imperfections and to the loading protocol—we only 
loaded 1 node out of approximately 15 on the 
model—are probably significant and their 
contributions to the results are still poorly controlled. 
 We could not scale the bolts and therefore the 

washers. They are proportionally larger and 
mechanically increase the friction at the nodes and 
therefore their stiffness. It is a fact that the difference 
in the physical tests between the model with the loose 
nodes (0.0177 kg per node) and the braced gridshell 
model (0.0182 kg per node) suggests that once the 
shell has been shaped, the friction between the bolts of 
the nodes and the lattices plays a non-negligible role 
in blocking by friction, especially as the scale of the 
model is reduced and the scale of the bolts is 
proportionally larger compared to that lattices. 
However, this bias does not contradict—on the 
contrary—our previous interpretations. 
 These conclusions would imply that the consistency 

between the critical buckling load of a gridshell 
(braced or not) and that of a cylinder shell subjected to 
hydrostatic pressure is valid only on a sufficiently 
large scale. We note that a cylindrical shell has no 
possible movements in the plane of its surface. 
 We did not test a simple and symmetrical 

cylindrical vault but the project of architecture 
students from ENSA-Paris la Villette, which presents 
a strong asymmetry. Subsequent tests showed that  
this asymmetry reduced the critical buckling load   
by 33% according to the physical tests on a 1:10  
scale model and by 46% according to the extrapolated 
numerical model (Fig. 19). We also noticed that   
this asymmetry very substantially increased the 
sensitivity of the loading imperfection (depending on 
the position of the loads, the result could vary by 
56%). 

We conclude that additional tests on a 1:2 scale 
model are necessary in order to assess the impact of 
imperfections in the result. Indeed, on a larger scale, 
the loading and geometry imperfections and also   
the nodes friction will be reduced. A modification of 
the ELASTICA algorithm taking into account the 
rotational stiffness of the nodes and the in-plane 
bending stiffness of the lattices will also make it 
possible to compare the new physical results to 
numerical ones. 

4.4.4 Methodology for the Analysis of the 
Contribution of Rotational Stiffness of Nodes 
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Fig. 19  Effect of gridshell symmetry: adding only the red parts increased the critical buckling load of Elastica by 86% 
according to the numerical simulation. A similar modification on Kagome led to an increase of 50% according to a loading 
test on a 1:10 physical model. 
 

Taking into account the rotational stiffness of the nodes: it is modeled at each node by a spring force Ff 
proportional to the rotation angle θ between the two directions of the lattices (Fig. 20): 
 

 
Fig. 20  Spring force due to the friction opposing the relative rotation of the lattices. 
 

It combines the contribution of: 
(1) a tightening force Nser equal to 90% of the 

elastic limit of the wood perpendicular to the fibers 
σy,w,90 multiplied by the washer area Ar:  

𝑁௦௘௥ = 0,9 ∗ 𝜎௬,௪,ଽ଴ ∗ 𝐴௥ (1)
(2) a force Ncon linked to the contact between the lattices 

of the 2 opposite directions when the curvature of one 
exceeds a limit defined by an average slack (Fig. 21): 

 𝑵𝒄𝒐𝒏 = ൫𝑭𝒊ି𝟏,𝒊 ൅ 𝑭𝒊,𝒊ା𝟏൯ ∗ 𝐜𝐨𝐬ሺ𝜶𝒊ሻ ൎ 𝟒𝑬𝑰 𝐬𝐢𝐧ሺ𝜶𝒊ሻ 𝐜𝐨𝐬ሺ𝜶𝒊ሻ𝑳𝟎𝟐  (2)
 𝑵𝒔𝒆𝒓 = ൫𝑭𝒊ି𝟏,𝒊 ൅ 𝑭𝒊,𝒊ା𝟏൯ ∗ 𝐜𝐨𝐬ሺ𝜶𝒊ሻൎ 𝟒𝑬𝑰 𝐬𝐢𝐧ሺ𝜶𝒊ሻ 𝐜𝐨𝐬ሺ𝜶𝒊ሻ𝑳𝟎𝟐  

The bearing moment Mr equals then: 𝑴𝒓 = 𝜶𝒇𝒓 ∗ ሺ𝑵𝒔𝒆𝒓 ൅ 𝑵𝒄𝒐𝒏ሻ ∗ 𝒃𝟐 (3)

where αfr is the static friction coefficient of 
wood-on-wood. 

Hence the fictitious force Ff: 

𝑭𝒇 = 𝑴𝒓𝑳𝟎 = 𝜶𝒇𝒓 ∗ ሺ𝑵𝒔𝒆𝒓 ൅ 𝑵𝒄𝒐𝒏ሻ ∗ 𝒃𝟐 ∗ 𝑳𝟎  (4)

We carry out numerical tests with and without 
tightening of the assemblies. The contact force Ncon is 
applied only if the curvature is sufficient to create the 
contact. With one-millimeter tolerance in assemblage, 
contact appears in about one-third to one-half of the 
gridshell nodes, according to our testing. The results 
are presented in Tables 7-9. 

 

Ff 

dθ/2 

Ff 

Ff Ff 
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𝐹௜ିଵ,௜ = 2𝐸𝐼 sinሺ𝛼௜ሻ𝐿௜ିଵ,௜ ∗ 𝐿௜ିଵ,௜ାଵ 

 𝐹௜,௜ାଵ = 2𝐸𝐼 sinሺ𝛼௜ሻ𝐿௜,௜ାଵ ∗ 𝐿௜ିଵ,௜ାଵ  

Fig. 21  Forces due to bending (see Appendix A). 
 
 

  

(a) (b) (c) 

Fig. 22  (a) “Arch” gridshell; (b) “critical” gridshell; (c) “collapsed” gridshell. 
 

Table 5  Model data for the 1:2 scale model of Elastica (single layer version, no bracings). 

Parameters Model 1:2  Project 
Radius of curvature at the center R 1.20 m 2.40 m 
Lattice section b×h 24 mm × 7 mm  50 mm × 12 mm  
Number of nodes by m² 16 4 
Gridshell span S/Distance between lattices a 1.78 m/250 mm  3.56 m/500 mm  
Timber elastic modulus 11,500 MPa 11,500 MPa 
 

Table 6  Comparison and calibration of the physical tests for the 1:2 scale model of Elastica. 

Models Buckling start (RD) Rupture (physical) End of buckling (RD) 

 

 

- Load: 57.15 kg Load: 65.00 kg Load 74.14 kg 
 

During these more precise tests, we realized that 
there were in fact three distinct states on our model 
which prompted us to define more stages of global 
buckling load on the structure instead of one. In order 
to correctly characterize the observed results, we 
define them in Fig. 22. 

Finally, a half-scale model was produced for the 
purpose of loading tests (Table 5). During this 
experiment, only the 73 most critical to buckling 
nodes were loaded (out of 203 nodes in total). This 
induces a loading bias that must therefore be corrected 
using a numerical test where the own weight of the 

αi 
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gridshell is distributed over all the nodes, but the 
additional load is applied over the 73 selected nodes 
only (Table 6). 

It should also be noted that the condition of the 
collapse occurred in the model at an earlier load 
compared to the dynamic relaxation modelisation. 
This is due to the fact that in dynamic relaxation, the 
bars are considered to be infinitely resistant, allowing 
a complete overturning of the gridshell. In reality, this 
geometric deformation generates a localized drop in 
the radii of curvature and therefore an increase in the 
stress which will exceed the breaking stress limit of 
the wood (Fig.24). This observation invites to 
introduce a safety coefficient on the result of the 
dynamic relaxation that our present study places 
around 1.15. 

4.4.5 Methodology for the Analysis of the 
Contribution of the In-Plane Bending Stiffness 

As explained in Appendix A, on a given lattice, for 
a series of 3 consecutive points A, B, C, the forces due 
to the bending moment belong to the plane (ABC). 
These forces are then proportional to the sine of angle 
α between 𝐀𝐁ሬሬሬሬሬ⃗  and 𝐁𝐂ሬሬሬሬሬ⃗  and to the inertia of the 
section. Until now, ELASTICA tool has considered a 
bending of the laths in the “weak” direction ሺ𝑰𝒙𝒙 = 𝒃 ∗ 𝒉𝟑 𝟏𝟐⁄ ሻ, thus as if the lath’s bending was 
entirely in the plane perpendicular to the gridshell’s 
surface plane. This assumes that the generative curves 
of the “arch” are single curvature, which is not the 
case. In reality, the laths are in bi-axial bending: in the 
weak direction as previously described (out-of-plane 
bending) and in the shell surface (in-plane bending). 
The latter therefore involves the strong sense of inertia ൫𝑰𝒚𝒚 = 𝒉 ∗ 𝒃𝟑 𝟏𝟐⁄ ൯. 

To take this into account, we construct two planes 
(Fig. 23): a plane TB which is the tangent to the shell 
at point B (a smooth surface is defined by 
interpolation of the nodes of the gridshell at each time 
step of the dynamic relaxation), and a plane NB which 
contains the normal to the surface at point B and line 

(AC). Taking in-plane stiffness into account means 
that the planes (ABC) and NB are not identical. We 
project point B on plane NB (obtaining B’) and points 
A and C on plane TB (obtaining A’’ and C’’), then we 
calculate the forces due to bending in each plane. 

4.4.6 Results of Physical and Numerical Loading 
Tests 

The compared results of the tests relating to the 
rotational stiffness of the nodes and in-plane bending 
stiffness on physical models and on numerical models 
are given in Tables 7-9. 

It is noted that the difference between scale model 
and numerical simulation is greatly reduced when the 
rotational stiffness of the nodes is taken into account 
in the calculation: it is for example of the order of 4% 
on the tests on the 1:10 model. However, taking these 
parameters into account requires a “guesswork” 
evaluation of the actual tolerance in the connections 
and of the tightening force of the nuts. We also 
observe that the contribution of in-plane bending 
stiffness has a very little effect on the results. 

The second observation is that the contribution of 
the rotational stiffness of the nodes decreases with the 
scale of the model, thus—on this precise parameter—we 
could conclude that the numerical simulation should 
give results close to reality at scale 1 and that this is 
especially true if the gridshell is braced. 
 

 
Fig. 23  Definition of the planes used to evaluate bi-axial 
bending. 
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Table 7  Impact of rotational stiffness of nodes on numerical and physical tests at a 1:10 scale. 

Type of test 0.010 kg 0.011 kg 0.013 kg 0.015 kg 0.016 kg 0.017 kg 0.018 kg 0.021 kg 0.026 kg 0.027 kg

Dynamic 
relaxation with 
articulated nodes 

  
Dynamic 
relaxation with 
friction and loose 
connections   

 

Physical test, 
loose connections 

  

Dynamic 
relaxation with 
friction and tight 
connections  

  

Dynamic 
relaxation with 
friction and tight 
connections 
considering 
in-plane stiffness 

 

  
 

Physical test, tight 
connections 

   
 

Table 8  Impact of rotational stiffness of nodes on numerical and physical tests at a 1:2 scale. 

Type of test 0.40 kg 0.45 kg 0.50 kg 0.55 kg 0.60 kg 0.65 kg 

Dynamic relaxation with 
articulated nodes 

  

Dynamic relaxation with friction 
and loose connections 

   

Dynamic relaxation with friction 
and tight connections 

  

Physical test, tight connections 
(recalibrated according to loaded 
nodes) 

 

? 
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Table 9  Impact of rotational stiffness of nodes on numerical and physical tests at a 1:1 scale. 

Type of test 0.9 kg 1.0 kg 1.1 kg 1.2 kg 1.3 kg 1.4 kg 1.5 kg 1.6 kg 

Dynamic 
relaxation with 
articulated nodes 

    

Dynamic 
relaxation with 
friction and loose 
connections    

Dynamic 
relaxation with 
friction and tight 
connections   

 

 
(a) (b) 

Fig. 24  By running simulations, a stress concentration (95-105 MPa) is observed in the region where the curvature is 
maximum (a). At 65 kg, the stress values are higher than stresses in other regions and compared to stresses with lower loads, 
hence the failure happens before the instability as demonstrated with the physical loading test (b). 
 

 
Fig. 25  First proposal for a safety factor to be applied to the result of a test on an unbraced model to take into account the 
non-linearity of friction and nodal stiffness, depending on the scale. 
 

5. Conclusions and Applications 

From these studies, it can be concluded that: 
 For unbraced gridshell, the discrepancies 

between the critical buckling load obtained by the 
numerical method (with articulated nodes) and by the 

load tests on physical scale models seem to come 
mainly from the rotational stiffness of the nodes. 
 The contribution of the in-plane bending stiffness 

seems much less significant. 
 These results still need to be confirmed, given the 

possible biases in the tests and the observed sensitivity 

Model with tight nodes

Model with loose nodes

1:10 1:5 1:2 1:1

2.6 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

≥ 113 MPa 
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of the gridshell to them. We carried out about ten 
loading tests, which is still too small a number to 
correctly analyze the effect of these biases. 
 Excluding experimental biases, the numerical 

model with articulated nodes always gives the safest 
value. The results extrapolated on physical models tend 
to overestimate the actual buckling load of the project. 
 This difference decreases with the scale of the 

physical model (Fig. 25), the experimental biases also 
decrease. 
 The results observed in the case of a braced 

gridshell are more reliable, even with small scale 

models. We recommend applying to the numerical 
results a safety coefficient of at least 1.10 in this type 
of design. 
 In reality, the rupture occurs earlier than 

numerically envisaged because of the stress generated 
by the deformation. We recommend applying a safety 
factor of at least 1.15 to the result of the dynamic 
relaxation to take it into account. 

Thanks to this study we were also able to 
extrapolate the resistance of the Kagome interlaced 
gridshell (Fig. 26). The results, including the safety 
factors stated in this paper, are as follows: 

 

    
 

    
Fig. 26  Load tests on the 1:10 and 1:2 physical models of the Kagome gridshell (single and double layer), and view of the 
scale 1 pavilion during construction. 
 

 Single layer (asymmetric plan): 2 tests; average: 
8.82 kg/m²; s = 0.42; 
 Double layer (asymmetric plan): 2 tests; average: 

12.86 kg/m²; s = 0.33; 
 Double layer (symmetric plan): 1 test; 23.50 

kg/m² according to scale 1:10 extrapolation and 28.13 
kg/m² according to scale 1:2 extrapolation. 

On the basis of these results, we decided to carry 
out the last design (symmetrical plan and double lathing). 

Supplementary Materials 

ELASTICA algorithm is freely available online at: 
https://www.construire-l-architecture.com/07-elastica. 
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Appendix A: Numerical Modelisation by Dynamic Relaxation and ELASTICA Algoritm 

Reproduced and adapted with permission from: Marc Leyral, Sylvain Ebode, Pierre Guerold, Clément Berthou; Elastica project: 

Dynamic Relaxation for Post-formed Elastic Gridshells, in Inspiring the Next Generation: Proceedings of the International 

Conference on Spatial Structures 2020/21 (IASS2020/21-Surrey), edited by: Alireza Behnejad, Gerard Parke and Omidali Samavati, 

published by University of Surrey, Guildford, UK, in August 2021 [2]. 

(1) Discretization of the Chebyshev Lattice Surface 

The shape resulting from the initial phase of intention, which we will now call “architect’s shape”, is not the real shape of the 

project, which must respect the rules of physics (especially bending). The form finding consists in determining, from the architect’s 

shape, what the real shape is going to be. 

The first step, the division of any surface into equilateral parallelograms (a necessary condition for flat fabrication) is called a 

Chebyshev lattice, named after the mathematician who, in 1878, having a rather modest salary, accepted a contract to optimize the 

cutting of military uniforms. Chebyshev therefore devised a method to create a piece of clothing adapted to the human anatomy, in 

large quantities, quickly and at low cost (Fig. 1) [6]. 
 

 
(a) (b) 

Fig. 1  (a) Discretization of a fabric and Chebyshev pattern for dressing a half-sphere [2]; (b) Chebyshev lattice: principle, by model and by 
dynamic relaxation (Boisse [7] and Bouhaya [8]).  
 

The problem formulated by Ghys [9] highlights the link with gridshells: “A flattened fabric is formed by two networks of 
interwoven straight threads (...) which form small squares. (…) The initial small squares can become deformed: their sides do not 

change in length but the angle between the threads is no longer necessarily straight.” Thus, the change of angle between the threads 

allows them to envelop a double-curved surface without any fold. To achieve a Chebyshev lattice on any surface, one can go for a 

dynamic relaxation method, or by a geometric approach, called “compass method”, used by Frei Otto (Fig. 2). 
 

 

 
Fig. 2  Compass method and application by the ELASTICA algorithm [2]. 



Kagome Project: Physical and Numerical Modeling Comparison for a Post-formed Elastic Gridshell 

 

223

(2) Dynamic Relaxation  

This form finding method, even though simple since it is based on the laws of Newtonian physics, is iterative and heavy by its 

quantity of calculations (Figs. 3 and 4): its development had to wait until the end of the 20th century and computer-assisted numerical 

modeling. It was then applied, among others, to shells (Otter, 1964), tensioned and inflatable structures [10]. 

  

  
Fig. 3  General principle of dynamic relaxation applied to an example of the form finding of a stretched canvas [11]. 
 

Dynamic relaxation allows solving static equilibrium problems by a fictitious and iterative dynamic calculation. It is valid for large 

deflections. According to Barnes [10], “the basis of the method is to trace step-by-step for small time increments, Δt, the motion of 

each node of a structure (from an initial disturbed instant) until, due to artificial damping, the structure comes to rest in static 

equilibrium.” 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4  Trial gridshell by Rombouts [12]: mesh of the architect’s form (a), form finding after dynamic relaxation (b), and 
built project (c).  
 

(3) Theory from an Analytical Point of View  

The architect’s shape is not the natural form of the project, so it is not at rest. It wants to move to its natural position: it needs to 

relax. Thus, the fictitious motion of a structure modeled by a discrete mesh of bars (for a gridshell, this comes from a Chebyshev 

lattice, it therefore represents the real physical elements of the structure), at the intersection of which are located the nodes subjected 

to forces, must be calculated. Indeed, according to Newton’s second law ∑ 𝑭ሬሬ⃗ = 𝒎 ∗ 𝒂ሬሬ⃗ , if the forces at each node do not balance, 

then the nodes (to which we attribute a mass, real or fictitious) experience a fictitious acceleration 𝒂ሬሬ⃗  = ∑ 𝑭ሬሬ⃗ 𝒎⁄ , and therefore move 
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at a velocity that varies with time. This lets us calculate at each iteration, the position of each node at the next instant. 

In the case of a gridshell, there are (at least) three forces acting at the nodes (Fig. 5): the nodal dead weight (𝑭ሬሬ⃗ ൌ 𝒎 ∗ 𝒈ሬሬ⃗ ), the force 
induced by the bending of the elements as described by Barnes, and the Hooke force in each element, proportional to their axial 

stiffness and deformation (𝑭ሬሬ⃗ ൌ 𝑬𝑨 ∗ ∆𝑳/𝑳ሬሬሬሬሬሬሬሬሬሬ⃗ ), which ensures the equilibrium of each node. To calculate the value of the bending forces, 
let us start from the bending moment M which causes the bending of the elements, the force field applied to the nodes is deduced 

from the relation 𝑴ሬሬሬ⃗ ൌ  𝑶𝑨ሬሬሬሬሬሬ⃗  ^ 𝑭ሬሬ⃗ . The algebraic value of the moment being 𝑴 ൌ  𝑬𝑰𝑹  and, by definition, 𝑹 ൌ  𝑳𝒊ష𝟏,𝒊శ𝟏𝟐 𝐬𝐢𝐧ሺ𝜶𝒊ሻ, we obtain 

𝑴 ൌ  𝟐 𝑬𝑰 𝒔𝒊𝒏ሺ𝜶𝒊ሻ𝑳𝒊ష𝟏,𝒊శ𝟏  . We deduce that in a system composed of curved beams, each trio of consecutive nodes admits on the ends of each 

of the two segments formed two opposite forces of the same values, 𝑭𝒊ି𝟏,𝒊 ൌ 𝟐𝑬𝑰 𝐬𝐢𝐧ሺ𝜶𝒊ሻ𝑳𝒊ష𝟏,𝒊∗𝑳𝒊ష𝟏,𝒊శ𝟏 for the first segment and 𝑭𝒊,𝒊ା𝟏 ൌ
𝟐𝑬𝑰 𝐬𝐢𝐧ሺ𝜶𝒊ሻ𝑳𝒊,𝒊శ𝟏∗𝑳𝒊ష𝟏,𝒊శ𝟏 for the second.  

 

(a) (b) 
Fig. 5  Equilibrium of a node by the spring forces from Hooke’s law on the example of a loaded cable (a), and forces due to 
bending in the case of a gridshell (b).  
 

Once the acceleration 𝒂𝒕ሬሬሬሬ⃗  at a fictitious instant t has been calculated and knowing the initial velocities 𝒗𝒕ା𝒅𝒕ሬሬሬሬሬሬሬሬሬሬ⃗  at the same instant, 

we deduce nodal velocities at the following instant t + dt:  𝐷 ൌ 𝑣௧ା೏೟మሬሬሬሬሬሬሬሬሬ⃗ ∗ d𝑡 ൌ 𝑎௧ሬሬሬ⃗ ∗ 𝑑𝑡ଶ2 ൅ 𝑣௧ሬሬሬ⃗ ∗ 𝑑𝑡  (5)

We then obtain the positions of each node at time t + dt. The operation is repeated until an equilibrium of forces is reached at each 

node: the structure is then at its natural position. This can only be done by adding a damping in the system, which is explained below. 

(4) General Theory from an Energetic Point of View 

At the initial instant, the deviation between the initial architect’s shape and the equilibrium shape being maximum, the potential 

energy of the system is maximum, the initial nodal velocities being zero, the kinetic energy ∑ 𝟏𝟐 ∗ 𝒎 ∗ 𝒗²𝒏𝒐𝒅𝒆𝒔  of the system is as 

well. The relaxation then causes the nodes to move: the structure is going closer to its equilibrium, the potential energy is reduced by 

conversion into kinetic energy. When the system passes through its equilibrium position, the forces balance and the potential energy 

becomes zero. But nodal velocities, which are then maximum (and therefore the kinetic energy as well), cause a continuation of the 

movement in the opposite direction: the system oscillates. 

At convergence, which can only be reached by adding damping to dissipate the total energy of the system, equilibrium position is 

obtained when the potential energy is zero (the forces are in equilibrium) and the kinetic energy is zero (the nodes no longer move: 

their velocities is zero), see Fig. 6. 

αi 
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Fig. 6  Energy transfer during the dynamic relaxation of a gridshell [2]. 
 

Damping can be either viscous damping by the addition of an additional force 𝑭𝒂ሬሬሬሬ⃗ =  െ 𝒄 ∗ 𝒗ሬሬ⃗  or kinetic damping. Our ELASTICA 
algorithm uses this last method because it does not require setting new parameters and often allows for faster convergence. Barnes [10] 

explains that kinetic damping “is an artificial damping (...). In this procedure the undamped motion of the structure is traced and 

when a local peak in the total kinetic energy of the system is detected, all velocity components are set to zero. The process is then 

restarted from the current geometry and repeated through further (generally decreasing) peaks until the energy of all modes of 

vibration has been dissipated and static equilibrium is achieved.” 

(5) Calculation of the Time Interval dt of the Iterations  

A time interval too short or a nodal mass too high can lead to a divergence. Commonly, we choose a time interval dt and deduce 

from it the fictitious nodal masses—different from the real nodal masses of the project—able to ensure the convergence of the 

algorithm by the Barnes-Han-Lee formula: 𝒎 = 𝐝𝒕²𝟐 ∗ ൫∑ 𝑹𝒂𝝁 ൅ ∑ 𝑹𝒇𝝁 ൯ where μ is the number of bars connected to each node (4 

without bracing and 6 with). For convenience, we have set in ELASTICA tool the nodal mass m equal to the real mass and deducted 

dt. This simple formula does not always ensure convergence: it is advisable to divide it by a safety factor (1.2 has been chosen in our 

case after several tests). 

(6) The ELASTICA Algorithm  

This algorithm is the concrete application of the above, usable for any type of elastic gridshell, and available in open source on the 

website: www.construire-l-architecture.com (Fig. 7). 
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(a) (b) 
Fig. 7  Chronology of form finding stages and stability control using dynamic relaxation by Rombouts [12], and extract of 
the ELASTICA algorithm [2]. 
 

The ELASTICA algorithm is able to: 

 Divide any surface into a Chebyshev network using the compass method. 

 Solve form finding according to different parameters (geometry, single or double layering, with or without bracing, with or 

without shear blocks, etc.). 

 Find the critical load that will cause the buckling of the structure. 

 Give stress in timber lattices. 

 Give stress in metallic or timber bracing elements. 

 Verify the local non-buckling condition of every bar in the project. 

 Calculate horizontal reactions. 

 Automatically draw up the fabrication and assembly plans of the structure. 
 


