Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Department of Sciences, Private University Antenor Orrego, 13006, Peru 2. Department of Sciences, National University of the Trujillo, 13006, Peru

ABSTRACT

Physicists experimentalists use many observations of a phenomenon, which are the unknown equations that describe it, in order to understand the dynamics and obtain information on their future behavior. In this article we study the possibility of reproducing the dynamics of the phenomenon using only a measurement scale. The Whitney immersion theorem ideas are presented and generalization of Sauer for fractal sets to rebuild the asymptotic behavior of the phenomena and to investigate evidence of nonlinear dynamics in the reproduced dynamics using the Brock, Dechert, Scheinkman test (BDS). The applications are made in the financial market which are only known stock prices.

KEYWORDS

Nonlinear dynamics, surrogate data, BDS test and serial times.

Cite this paper

Gutierrez, A. N. 2019. “Detecting nonlinear dynamics using BDS test and surrogate data in financial time series” Journal of Mathematics and System Science 9: 46-53.

References

[1]    Kantz, H., and Schreiber, T. 2004. Nonlinear Time Series Analysis. Cambridge University Press.

[2]    Mañe, R. “On the Dimension of the Compact Invariant Sets of Certain Nonlinear Maps. Dynamical Systems and Turbulence.” Warwick, Lecture Notes in Mathematics 898: 230-42.

[3]    Sauer, T., Yorke, J. A., and Casdagli, M. “Embedology.” Journal of Statistical Physics 65: 579-616.

[4]    Takens, F. 1981. Detecting Strange Attractors in Turbulence. Springer Berlin, Book Series Lecture Notes in Mathematics, 366-81.

[5]    Hegger, R., Kantz, H., and Schreiber, T. 1999. “Practical Implementation of Nonlinear Time Series Methods: The TISEAN package.” Chaos 9: 413; doi:10.1063/1.166424.

[6]    Kaplan, D. 2002. “Making and Using Surrogate Data.” http://www.macalester.edu/~kaplan/barcelona/surrogatewrap.pdf.

[7]    Fraser, A. M., and Swinney, H. L. 1986. “Independent Coordinates for Strange Attractors from Mutual Information.” Physical Review A (General Physics) 33 (2): 1134-40.

[8]    Provenzale, A., Smith, L. A., Vio, R., and Murante G. 1992. “Distinguishing between Low-Dimensional Dynamics and Randomness in Measured Time Series.” Physica D 58: 31.

[9]    Small, M., Yu, D., Simonotto, J., Harrison, R. G., Grubb, N., and Fox, K. A. A. 2002. “Uncovering Non-linear Structure in Human ECG Recordings.” Chaos, Solitons, Fractals 13 (8): 1755-62.

[10]    Schreiber, T., and Schmitz, A. 1999. “Improved Surrogate Data for Nonlinearity Tests.” Phys. Rev. Lett. 77: 635.

[11]    Kantz, H., and Schreiber, T. 1997. Nonlinear Time Series Analysis. Cambridge University Press.

[12]    Broock, W. A., Scheinkman, J. A., Dechert, W. D., and LeBaron, B. 1996. “A Test for Independence Based on the Correlation Dimension.” Journals in Its Journal Econometric Reviews 15 (3): 197-235.

[13]    Scheinkman, J. A. 1990. “Nonlinearities in Economic Dynamics.” Royal Economic Society, Economic Journal 400: 33-48.

[14]    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D. 1992. “Testing for Nonlinearity in Time Series: The Method of Surrogate Data.” Physical D: Nonlinear Phenomena 58 (1-4): 77-94.

[15]    Hsieh, D. A. 1991. “Chaos and Nonlinear Dynamics: Application to Financial Markets.” The Journal of Finance 46 (5): 1839-77.

[16]    Willey, T. 1992. “Testing for Nonlinear Dependence in Daily Stock Indices.” Journal of Economics and Business 44 (1): 63-76.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]