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Abstract: Physicists experimentalists use many observations of a phenomenon, which are the unknown equations that describe it, in 

order to understand the dynamics and obtain information on their future behavior. In this article we study the possibility of reproducing 

the dynamics of the phenomenon using only a measurement scale. The Whitney immersion theorem ideas are presented and 

generalization of Sauer for fractal sets to rebuild the asymptotic behavior of the phenomena and to investigate evidence of nonlinear 

dynamics in the reproduced dynamics using the Brock, Dechert, Scheinkman test (BDS). The applications are made in the financial 

market which are only known stock prices. 
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1. Introduction

 

For a study of the asymptotic behavior of solutions 

of a system, the area of dynamical systems has 

developed a lot of tools, but in many phenomena as 

financial markets, equations that model them are 

unknown and the only available information is a 

temporal set of measures. 

A time series is a function s: IR → IR, and its image 

could be considered as observations taken overtime in 

a phenomenon. Those pieces of observations have 

information about the system, and we are ready to 

answer questions, like does that series have enough 

information to rebuild the dynamics? If it is so, can  

we predestine its future behavior? But there is one 

more general question. Will the financial market have 

a random behavior or not? The chaos theory could 

give us. 

An answer where systems with an apparently 

random behavior, comes from a deterministic system, 

it means a completely modeling system by equations. 

A characteristic of these systems is the non-linear 

dependencies between their variables. We will do our 
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research in a time series of the stock prices in the 

mining company MINSUR.SA to determine concrete 

evidence of non-linearity presence in that series. Fig. 1 

shows the evolution of stock prices of the company. 

The main task to study nonlinear behavior in a time 

series is the rebuilding of the dynamics it has. If a time 

series comes from a deterministic system, so that it has 

dependence between its components given by the 

system of equations that models and contains geometric 

information considering that trajectories converge to an 

attractor which will immerse in some Euclidian space. 

Using such information and the Whitney immersion 

theorem ideas in which a dimensional compact 

manifold n can be immersed in IR2n and its 

generalizations for fractal sets given for Tim Sauer [3], 

we will rebuild the dynamics knowing the information 

of one of the components of Lorenz system only. 

Now we can see the probabilistic version of 

Theorem of Whitney [3]. 

2. Main Theorems 

Theorem 1: (Prevalent theorem of Whitney). If A 

is a smooth compact manifold of dimension d 

contained on R
k
. Almost all smooth map, F: R

k
 

 R
2d+1

, is an immersion of A. 
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Fig. 1  Evolution of stock prices of the MINSUR company. 
 

The theorem (1) says it is possible to rebuild the 

existing dynamics with projections in Euclidian spaces. 

Although we have the theorem of Whitney, we still 

have a practical problem. We only can get a temporal 

observation of the dynamics in the financial market; the 

evolution of the stock prices and we will need 2d + 1 

observations of the phenomenon. So, the obtained 

results are not enough. Takens assumed this problem 

adding the contained dynamics in the time series in the 

Theorem of Whitney. It is a projection via a function of 

observation of the phase space where the dynamical 

system is developed for IR. Therefore, it contains 

information about the dynamics. For this, it defines the 

delay coordinates, which only need a temporary 

observation. 

Definition 1: If Φ is a dynamics system over a 

manifold A, T a positive integer (called of delay), and h: 

A   IR a smooth function. We defines the map of 

delaying coordinates F(Φ,T,h) : A → R
n+1

 

F(Φ,T,h)(x) = (h(x), h(ΦT (x)),  

h(Φ2T (x)), . . . , h(ΦnT (x))) 

Takens [4] demonstrated a new version of theorem 

of Whitney for the delaying coordinates. 

Theorem 3: (Takens) A is a dimensional compact 

manifold m dimensional, {Φk}k∈Z a discrete 

dynamical system over A, generated by F: A → A, 

and a function of classes C
2
, h: A → IR. Then a 

generic characteristic of map F(Φ,h)(x): A → IR
2m+1

 

defined by F(Φ, h)(x) = (h(x), h(Φk(x)), h(Φ2k(x)), …, 

h(Φnk(x))) is an immersion. 

The final generalization used in this article was 

given by B. Hunt, T. Sauer and J. Yorke [3], that is a 

fractal version of theorem of Whitney for the delaying 

maps set with A being a fractal set. 

Theorem 4 (Fractal Delay Embedding Prevalence 

Theorem) Φ a dynamics system over an open subset U 

of IR
k
, and A which is a compact subset of U with box 

dimension d and n > 2d an integer and T > 0. Assume 

that A contains only a finite number of equilibria points, 

it does not contain periodic orbits of Φ of period T o 

2T, a finite number of periodic orbits of Φ of period 3T, 

4T, …, nT, and these periodic orbits of linearization 

have different eigen-values. So for almost every 

smooth function (in the sense prevalente) smooth 

function h over U, the delay coordinates map F(Φ,T,h): 

U → R
n
 is injective over A. 

The theorem (4) does not provide an estimation 

about the smaller dimension for which almost every 

delaying coordinate map is injective. However, there 

are numerical algorithms which allow calculating the 

immersion dimension and the delaying time in the 

reconstruction. Following, we show the reconstruction 

of the dynamics generated for the system of Lorenz 

using only the coordinate x of the system. 

3. Examples of Reconstruction of the 

Attractor Using Delay Coordinates 

We use the Lorenz’s attractor to show the technique 

of delaying coordinates. The function of observation h 

was the projection in the x axis. 

h: IR
3
 → IR 

(x, y, z) → h(x, y, z) = x 

The time series will be formed by x coordinates of 

the trajectories that are numerical solutions of the 

equation. Fixed the dimension, n = 3, we change the 

value of T. According to Lorenz’s we use delaying 

times, T = 1, T = 10, T = 17, T = 90. In the case T = 1 

points in the space are highly correlated and the 

graphic is almost a straight line. At the other extreme,  
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Fig. 2  Reconstruction of the Lorenz attractor using projections with time delay d = 1, 10, 17 and 90 respectively. 
 

T = 90, points are not correlated and the gotten 

graphic does not represent the reconstruction of the 

attractor. The optimal delay time was T = 17. 

4. Identifying Non-linearity 

We will identify no lineal dependences on data. The 

most used techniques are method of surrogate’s data 

and the Brock, Dechert, Scheinkman test (BDS). 

Kantz e Schreiber [11] recommend that before doing 

any non-lineal analysis on a data set, it is good practice 

to check if there is no linearity. We presented the 

technique of surrogate data and the BDS test. 

4.1 Surrogate Data 

A very useful technique used by physicist is 

surrogate generation of Surrogate data, a procedure 

done by Theiler, Eubank, Longtin, Galdrikan and 

Farmer [15]. From the original data, it generates a set 

of random series so that, these keep the linear 

properties of the original series (average, variance, 

Fourier spectrum) but eliminating the possible 

nonlinear dependencies. Then an indicator is evaluated, 

which is sensitive to nonlinear dependencies and tries 

to reject the null hypothesis, which states that data are 

obtained by a stochastic linear process. If the null 

hypothesis is true, then the substitute series procedure 

would not affect the indicator.  

The most used indicators are correlation dimension. 

It was used by Small et al. [10] and no linear prediction 

was used by Kaplan [6]. 

We will illustrate the technique of substitute data 

applied in Lorenz series and use the nonlinear 

prediction. 

The election was due to deterministic systems the 

prediction on a short term is possible, in contrast to 

Stochastic systems in which the prediction in a short 

term is impossible. For the prediction nonlinear we 

will use the method developed by Hegger, Kantz and 

Schreiber [5], where the value of predicting is the 

average of “future” values. This state n + k, is defined 

by average of the closed values. It is calculated by the 

following equation:  
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Fig. 3  In the graphic the projection errors of Lorenz series and its surrogate series. 
 

 

where Un is the neighborhood, Sj are values within Un 

and Sj+k are the values at time n + k. With the 

prediction held, this is compared with the quadratic 

average error of prediction on future value of the 

original series with the surrogate series. If the 

prediction error of the series original is smaller than 

all the surrogate series, then we reject the null 

hypothesis. This graphic shows the results. 

The projection errors of the original series were 

smaller than its substitutes. Like this, we reject the null 

hypothesis. The following technique is more about 

statistics. 

5. BDS Test 

It was developed by Brock, Dechert and Scheinkman 

[12]. It is based on the correlation dimension to detect 

nonlinear structure in a time series. Additionally, this 

test can be used to test how good the fit estimation 

model is. 

Given a time series s1, s2, . . . , sN, using the method 

of delay coordinates, we have M = N − (m − 1)τ 

vectors in IR
m
, Xi = (si, si+τ, . . . , si+(m−1)τ), where τ is 

the delay time, m is the immersion dimension. The 

correlation dimension is given by the formula: 

 

where MXi (ϵ) is the function point mass, which 

indicates the probability where the points Xi, Xj are   

close to each other.  

For practical and didactic issues, we consider τ = 1. 

Now if m = 2 we will get: 

Xi = (xi, xi+1), 

Xj = (xj, xj+1). 

Then, ||Xi − Xj|| ≤ E implies |xi − xj| ≤   and |xi+1 - 

xj+1| ≤  . 

This allows saying that if the points Xi and Xj are 

closing to each other, then, the points from series xi and 

xj as well. It happens the same with points xi+1 and xj+1. 

Thus: 

 

where P indicates the probability. If the data x1, x2, …, 

xN are IID (independent and identically distributed), 

then P (|xi − xj| ≤ E) = P (|xi+1 − xj+1| ≤ E) and we have: 
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Thus, in dimension m we have: 

 

Then, 

 

As                             

               This suggests that the data are 

IID, then,  

          
       

where         is the integral of correlation in 

dimension m and   
       is the integral of 

correlation in dimension one. 

In Brock, Dechert and Scheinkman [12], statistical 

BDS test is defined by: 

 

where σm(M, E) is the estimation of the standard 

asymptotic error: Cm(M, E) − C
m
(M, E). They proved 

that: 

 
Now we will introduce an example applying the 

BDS test in Lorenz series and a series consisting of 

random numbers. 

5.1 BDS Test for Lorenz Series 

Table 1   

Dimension fo immersion (m) BDS 

1 165.270466 

2 447.623951 

3 578.535241 

4 772.617763 

5 1078.467687 

6 2338.679429 

7 3593.653394 

8 5640.618871 

5.2 BDS Test for a Series of Random Numbers 

Table 2   

Dimension fo immersion (m) BDS 

1 0.560594 

2 0.560594 

3 0.425293 

4 0.069765 

5 0.116118 

6 0.336857 

7 0.633835 

8 0.524584 

 

To understand the results, let us start talking about 

the degree of significance of a hypothesis. To ask a null 

hypothesis, in the case of the BDS test the null 

hypothesis is that the observations are IID, it can make 

a mistake of rejecting the null hypothesis being true. 

Suppose that the probability of committing this error is 

α, namely: 

α = P (rejecting H0|H0 ís true) 

α is called the degree of significance of this mistake. 

Now, in the BDS test: 

H0 : Cm(M, E) = C
m
(M, E) 

Ha : Cm(M, E) /= C
m
(M, E). 

By the test BDS, we know that: 

 

Then, 

 

If we look at the tables of the normal distribution N 

(0, 1), we see that for a degree of significance of α = 5%, 

Zc = 1.96. As, we reject the null hypothesis, with 



Detecting Nonlinear Dynamics Using BDS Test and Surrogate Data in Financial Time Series 

 

51 

degree of significance of 5%, if  

 

Noting again Tables 1 and 2, we can observe that in 

the case of Lorenz series, we reject the null hypothesis, 

the data are IID, otherwise case series formed by 

random numbers. 

6. Results 

The time series studied was the series of prices of the 

mining company Minsur, counting with the prices from 

10/13/1993 to 11/26/2014, with a total of 21 years of 

daily observations. 

For the use of surrogates, substitute series are 

generated that preserve linear properties of the original 

series, for example, Fig. 4 shows the histograms of the 

original series as well as their substitute series. 

The next step is the calculation of the predictions of 

each of the series, original and substitutes, comparing 

the relative errors. In Fig. 4 it is observed that the 

prediction errors of the series, the original presents a 

relatively short prediction error in the short term and 

the substitute series shows a high prediction error 

from the start. 

Therefore, the null hypothesis (H0: Error of the 

original series = than the prediction error of all its 

substitute series) is rejected since the prediction error 

of the original series is smaller than the prediction error 

of all its substitute series. Therefore, we reject the fact 

that the original series is generated by a stochastic 

linear process. 

On the other hand, the BDS test is a more statistical 

alternative to detect non-linear dependencies, we 

perform the test for several immersion dimensions. The 

next table shows the BDS statistic values for 

dimensions from 1 to 15. 
 

 
Fig. 4  Histograms of the original series as well as their substitute series for Minsur prices. 
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Fig. 5  Error of the original series is smaller than the prediction error of all its substitute series. 
 

Immersion dimension (m) BDS 

1 165.270466 

2 195.653634 

3 236.554950 

4 296.226274 

5 382.825922 

6 508.150676 

7 690.060422 

8 955.415301 

9 1,344.764026 

10 1,919.802065 

11 2,774.198843 

12 4,050.599850 

13 5,967.524832 

14 8,860.578053 

15 13,419.054424 
 

We see in the table that ｜BDS｜ > 1.96. Therefore, 

we reject the null hypothesis (that the data are IID), 

with a degree of significance of 5%. 

7. Conclusions  

Both tests showed that the data contain non-linear 

dependences. Having non-linear dependence on the 

data, a work to follow to understand the complexity of 

the dynamics is the search for the presence of unstable 

periodic orbits, using for this, the maps of recurrence or 

maps of Poincare, as well as the presence of a fractal 

attractor. 
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