Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Systems Engineering Institute, South China University of Technology, Guangzhou 510640, P.R. China

ABSTRACT

We establish a stochastic differential equation epidemic model of multi-group SIR type based on the deterministic R0multi-group SIR mode. Then, we define the basic reproduction number and show that it is a sharp threshold for the dynamic of R0the stochastic multi-group SIR model. More specially, if < 1, then the disease-free equilibrium will be asymptotically stable which means the disease will die out, if 0 > 1, the disease-free equilibrium will unstable, and our model will positively recurrence to a positive domain which implies the persistence of our model. Numerical simulation examples are carried out to substantiate the analytical results.

KEYWORDS

Stochastic, multi-group SIR model, threshold dynamics, positive recurrence, stochastic persistence

Cite this paper

References

[1]       W.O. Kermack, A.G. McKendrick, Contributions to the mathmatical theory of epidemics (Part 1), Proc. R. Sm. A 115 (1927) 700-721.

[2]       B. Song, C. Castillo-Chavez, J.P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts, Math Biosci 180 (1-2) (2002) 187-205.

[3]       M.Y. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size, Math Biosci 160 (2) (1999) 191-213.

[4]       M.Y. Li, H.L. Smith, L.Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM, J. Appl. Math. 62 (1) (2001) 58-69.

[5]       L. Wen, X. Yang, Global stability of a delayed SIRS model with temporary immunity, Chaos Solitons Fract 38 (1) (2008) 221-226.

[6]       Hsu Sze-Bi, Lih-Ing W. Roeger, The final size of a SARS epidemic model without quaran-tine, J. Math. Anal. Appl. 333 (1) (2007) 557-566.

[7]       H.B. Guo, M.Y. Li, Z.S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canada Apl. Math. Q.14 (1) (2006) 259-284.

[8]       J. Liu, Y. Zhou, Global stability of an SIRS epidemic model with transport-related infection, Chaos Solitons Fract 40 (1) (2009) 145-158.

[9]       H-F. Huo, Z-P. Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun Nonlinear Sci Numer Simul 15 (2) (2010) 459-468.

[10]    C.C. McCluskey, Complete global stability for an SIR epidemic model with delayDistributed or discrete, Nonlinear Anal RWA 11 (1) (2010) 55-59.

[11]    A. Lajmanovish, J.A. York, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci 28 (1976) 221-236.

[12]    H.B. Guo, M.Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci 3 (2006) 513-525.

[13]    E.Beretta, V.Capasso, Global stability results for a multi-group SIR epidemic model, World Scientific, Singapore,1986, pp. 317-342.

[14]    Hsu Sze-Bi, Lih-Ing W. Roeger, The final size of a SARS epidemic model without quaran-tine, J. Math. Anal. Appl. 333(2007) 557-566.

[15]    H.R Thieme, Methmatics in population biology, Princeton University Press, Princeton, 2003.

[16]    I.G Lauko, Stability of disease free sets in epidemic models, Math. Comput. Modeling 43(2006) 1357-1366.

[17]    D. Xiao, S. Ruan, Global stability of an epidemic model with nonmonotone SIR epidemic models, Math. Biosci. 208 (2007) 419-429.

[18]    S. Ruoyan, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. and Math. with Appl. 60(2010) 2286-2291.

[19]    M.Y. Li, Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equa. 248 (2010) 1-20.

[20]    R.Z. Khasminskii, F.C. Klerbaner, Long term behavior of solution of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab. 11 (2001) 952-963.

[21]    A. Bahar, X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl. 292 (2004) 364-380.

[22]    D.Q. Jiang, N.Z. Shi, A note on nonautonomous Logistic equation with random perturbation, J. Math. Anal. Appl. 303 (2005) 164-172.

[23]    D.Q. Jiang, N.Z. Shi, X.Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl. 340 (1) (2008) 588-597.

[24]    L. Imhof, S. Walcher, Exclusion and Persistence in deterministic and stochastic chemostat models, J. Differ Equ. 217 (1) (2005) 26-53.

[25]    M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open matine environment, Math. Biosci. 175 (2002) 17-131.

[26]    N. Dalal, D. Greenhalgh, X.R. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl. 341 (2008) 1084-1101.

[27]    N. Dalal, D. Greenhalgh, X.R. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53.

[28]    X. Mao, G. Marion, E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl. 287 (2003) 141-156.

[29]    X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosion in population dynamics, Stoch. Process Appl. 97 (2002) 95-110.

[30]    E. Tornatore, S.M. Buccellato, P. Vetro, Stability of a stochastic SIR system, Phys A: Statistical Mechanics and its Applications 354 (2005) 111-126.

[31]    J.J. Yu, D.Q. Jiang, N.Z. Shi, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl. 360 (2009) 235-244.

[32]    C.Y. Ji, D.Q. Jiang, Q.S. Yang, N.S. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica 48 (2012) 121-131.

[33]    H. Liu, Q.S. Yang, D.Q. Jiang, The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica 48 (2012) 820-825.

[34]    C.Y. Ji, D.Q. Jiang, N.Z. Shi, The behavior of an SIR epidemic model with stochastic pertur-bation, Stochastic Anal. Appl. 30 (2012) 755-773.

[35]    A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, Siam. J. Appl. Math. 71 (3) (2011) 876-902.

[36]    Horst R. Thieme, Uniform persistence and permanence for non-autonomous semiows in population biology, Mathematical Biosciencess 166 (2000) 173-201.

[37]    M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull Math. Biol. 73 (2011) 1969-2012.

[38]    X.R. Mao, Stochastic Differential Equation and Application, Horwood Pub., Glasgow, 1997.

[39]    V.I. Oseledec, A multiplication ergodic theorem: Lyapunov charactoristic numbers for dynamical system, Trans. Moscow Math. Soc. 19 (1968) 197-231.

[40]    R,Z. Hasminskii, Stochastic stability of differential equations, Alphen aan den Rijn, Sijthoff & Noordhoff, The Netherlands, 1980.

[41]    C. Zhu, G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM, J. Control Optim, 49 (4) (2007) 1155-1179.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]