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Abstract: We establish a stochastic differential equation epidemic model of multi-group SIR type based on the deterministic 

multi-group SIR mode. Then, we define the basic reproduction number SR0
 and show that it is a sharp threshold for the dynamic of 

the stochastic multi-group SIR model. More specially, if SR0  < 1, then the disease-free equilibrium will be asymptotically stable 

which means the disease will die out, if SR0  > 1, the disease-free equilibrium will unstable, and our model will positively recurrence 

to a positive domain which implies the persistence of our model. Numerical simulation examples are carried out to substantiate the 

analytical results. 
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1. Introduction 

For the past decades, many epidemic models have 

been proposed for modeling the spread process of 

infectious diseases, and in the meantime considerable 

attention has been paid to study the dynamical 

properties of these various models. Most models 

descend from the classical SIR model of Kermack and 

McKendrick [1], and then different type of epidemic 

models have been researched by many scholars [2-10]. 

In particular, multi-group models have been proposed 

to describe the transmission dynamics of infectious 

diseases in heterogeneous host populations, such as 

meals, mumps, gonorrhea, HIV/AIDS, WNV 

(West-Nile virus) and vector borne diseases such as 

malaria. One of the earliest works on multi-group 

models is the seminal paper by Laj-manovich and 

Yorke [11] on a class of SIS (suspectible, infected, 

suspectable) multi-group models for the transmission 

dynamics of Gonorrhea, which established a complete 
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analysis of the global dynamics. The global stability 

of the unique equilibrium is proved by using a 

complete analysis of the global Lyapunov function. 

Subsequently, much research has been done on 

multi-group models [12-18]. Recently, a 

group-theoretic approach to the method of global 

Lyapunov function was proposed by Michael et al. 

[19].In the paper, the authors studied the following 

SIR model: 
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The model describes the spread of an infectious 

disease in a heterogeneous population, which is 

partitioned into n homogeneous group. Each group k 

is further compartmentalized into Sk, Ik and Rk, here Sk, 

Ik and Rk denote the susceptible, infective and 

recovered population at time t, respectively. All 

parameters in the above model are nonnegative 

constants and summarized in the following list: 

ij : transmission coefficient between compartments 

iS  and jI ; 
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R
k

I
k ddd S

k ,, :nature death rates of S, I, R 

compartments in the k-th group, respectively; 

k
A : influx of individuals into the k-th group; 

i
 : recovery rate of infectious individuals in the i-th 

group; 

k
 : disease-caused death rate in the k-th group. 

All parameter values are assumed to be nonnegative 

and 0,,, k
R

k

I

k Addd S

k
 for all k. According to 

Michael et al. [19], there is a disease-free equilibrium: 
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A threshold R0 is defined which decide the 

epidemic will prevalent or not, where 

)( 00 MR                   (3) 

denote the spectral radius of the matrix 
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Here we give more details. If R0 ≤ 1, then, P0 is the 

unique equilibrium and it is globally asymptotically 

stable in Γ; If R0 > 1, then P0 is unstable and it is 

uniformly persistent. Furthermore, there exists an 

endemic equilibrium P* and it is globally 

asymptotically stable in Γ. In the whole proof, a very 

important graph theorem was used. 

Given a nonnegative matrix )( jiA   the directed 

graph G(A) associated with )( ijA   has vertices 1, 

2, ···, n with a directed arc (i, j) from i to j if 0ij . 

It is strongly connected if any two distinct vertices are 

joined by an oriented path. The matrix A is irreducible 

if and only if G(A) is strongly connected. A tree is a 

connected graph with no cycles. A sub tree T of a 

graph G is said to be spanning if T contains all the 

vertices of G. A directed tree is a tree in which each 

edge has been replaced by an arc directed one way or 

the other. A directed tree is said to be rooted at a 

vertex, called the root, if every arc is oriented in the 

direction towards the root. An oriented cycle in a 

directed graph is a simple closed oriented path. A 

unicyclic graph is a directed graph consisting of a 

collection of disjoint rooted directed trees whose root 

are on an oriented cycle. For a given nonnegative 

matrix A=( aij), let: 
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be the Laplacian matrix of the directed graph G(A) 

and Cij denote the cofactor of the (i, j) entry of L. In 

light of these results, complete determination of the 

global dynamic of these models is essential for their 

application and further development. 

Whereas the statement above, the large-scale 

biological system’s parameters are assumed as 

constants, but in the real situation, parameters 

involved with the model always fluctuate around some 

average value due to the continuous fluctuation in the 

environment. In order to study the dynamics of 

interacting population under realistic situation, we 

need to analyse the associated stochastic model. In 

fact, the stochastic epidemic models have been studied 

by many authors [20-36], they established related 

stochastic epidemic model based on the deterministic 

model. By using the Lyanupov method, Tornatore et 

al.[30],Yu et al. [31], Ji et al. [32], Liu et al. [33] and 

Ji et al. [34] found out sufficient conditions of the 

stability of the steady-state based on the deterministic 

threshold R0. Gray et al. [35] established a stochastic 

SIS model and found out the sufficient and necessary 

condition of the disease-free equilibrium and the 

condition of the persistence of the disease. Liu et 

al.[37] gave many stochastic persistence definitions 

about epidemic model. 

In this paper, we perturb the death rate and 

transmission coefficient of the deterministic 

multi-group SIR model Eq. (1) by replacing 
I

k
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k dd ,  

and kk , by )(tBd I
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where, )(),(),( tBtBtB RI  are independent standard 

Brownian motions with BI(0) = 0,BR(0) = 0, Bβ(0) = 

0.Then we formulate a stochastic multi-group SIR 

model as follows: 
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We prove the global existence of the positive 

solution in Section 2. The stability of the disease-free 

equilibrium is derived in Section 3, we will find out a 

new threshold 
SR0  different from the deterministic R0 

which determine the extinction and persistence of   

the disease. In Section 4, we give the proof of our 

model’s stochastic persistence. Examples and the 

simulation results are considered to illustrate our main 

results. 

Throughout the article, unless otherwise specified, 

we will employ the following notions. Let (Ω, F, {Ft}t≥0, 

P) be a complete probability space with a 

filtration{Ft}t≥0 satisfying the usual conditions, i.e., it 

is right continuous and F0 contains all P-null sets. We 

use ba  to denote max(a, b), ba   to denote 

min(a, b) and a.s. to mean almost surely. 

2. Existence and Uniqueness of the Positive 

Global Solution 

In this section, we prove the global existence of 

the positive solution of our stochastic system Eq. (6). 

As a stochastic differential equation, the functions 

involved with stochastic system are generally 

required to satisfy the Lipschitz condition and linear 

growth condition. Obviously, the functions in Eq. (6) 

do not satisfy the linear growth condition, so the 

solutions may explode at finite times. To solve this 

problem, we first show that the local positive 

solutions exist before the explode times, then we use 

the lyapunov function method to prove that the 

solutions exist globally. 

Theorem 2.1 If B=(βij)n×n is irreducible, then for 

any initial value (S1(0), I1(0), R1(0), … , Sn(0), In(0), 

Rn(0))∈ nR 3


, there exists a unique solution (S1(t), I1(t), 

R1(t),…, Sn(t), In(t), Rn(t))∈ nR 3


to system Eq. (6) and 

it satisfies P((S1(t), I1(t), R1(t), …  ,Sn(t), In(t), 

Rn(t)│(S1(t), I1(t), R1(t), … ,Sn(t), In(t), Rn(t) ∈
nR 3


）

=1, Which mean（S1(t), I1(t), R1(t), … ,Sn(t), In(t), Rn(t) 

∈ nR 3


. 

Proof. Since the coefficients of the equation are 

locally Lipschitz continuous, there is unique local 

solution on t ∈[0, τe), where τe is the explosion time 

[38].Using the 


oIt  formula, the solution can be 

expresses as:  
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(7) 

then Sk (t) > 0,t∈[0, τe), By the same way we get 
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then we can conclude that Sk(t), Ik(t), Rk(t) are positive 

on t∈[0, τe). Then we want to show that this solution 

is a global solution. To prove this, we need to show 

that τe = ∞ almost surely. We choose a sufficiently 

large number 0 such that S(0), I(0), R(0) all lie with 

the interval (0, m0), For each integer m > m0, we 

define the stopping time: 
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where, inf∅=∞. Set   klim  whence e  . 

If we can show that  a.s. it is sufficient to 

prove that e  a.s. for all t ≥ 0. If this statement 

were false, then there is a pair of constants T > 0 and  

ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε, hence there is   

an integer m1 ≥ m0 such that P{τm ≤ T} ≥ ε for all m ≥ 

m1. 

Define a function V(S1,I1,R1,… , Sn, In, Rn) = 

 

n

k 1 (Sk+Ik+Rk),using the 
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oIt  formula, for any t∈ (0, 

T] and m ≥ m1,  
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Therefore, if t ≤ T, we have 
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Set Ωm = {τm ≤ T}, for m ≥ m1, then we know P(Ωm). 

For every ω ∈ Ωm, max{Sk(t) + Ik(t) + Rk(t), k = 1, 

2,…, n} ≥ m, hence 
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Letting m→∞ leads to the contradiction ∞ > V(S(0), 

I(0), R(0)) + AT > ∞, so we have τ∞ =∞ a.s. whence the 

proof is complete. 

3. Extinction of the Epidemic 

In the study of population systems, extinction and 

persistence are two of the most important issues. In 

this section, we will discuss the extinction of Eq. (6). 

Since the coexisting disease-free equilibrium P0 of the 

deterministic SIR model Eq. (1), we make the variable 

changes )()(,)()( 0 tItvStStu kikki  and )()( tRtw k , 

so that the origin will represent the disease-free 

equilibrium, by this we consider the linearized system:  
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Considering the second Eq. (15), let x(t) = (v1(t), 

v2(t), ··· , vn(t)), we rewrite the second equation as  
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kkS , then the matrices F, G1, 

G2 commute, the explicit solution of the linearized 

system in Eq.(16) can be solved as 
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In this case, there is a pair of positive constants C 

and λ, so that 
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It then follows from Eq.(23) that 
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Substituting Eq. (24) into Eq. (25) we get 
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therefore, 
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Similarly, we can get the assertion for uk(t) as 
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In this way we proved that Eq. (15) is exponentially 

stable. According to the Oseledec multiplicative 

ergodic theorem [39], the necessary and sufficient 

condition for the almost sure asymptotic stability, of 

the trivial solution of the system is that the largest 

lyapunov exponent of the linearized system is 

negative. Therefore, we have the following results: 

Theorem 3.1 Assume that B= (βij)n× n is irreducible. 

(1) If 10 SR , then the disease-free equilibrium P0 is 

almost sure asymptotically stable, which means the 

disease will die out almost surely. 

(2) If 10 SR , then the disease-free equilibrium P0 is 

unstable. 

Remark 3.2 It is useful to observe that in either 

the classical deterministic model or the stochastic 

model, there is a threshold which reflect the 
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prevalent or extinction of the epidemic, but the 

thresholds are different between them, the stochastic 

threshold SR0  is smaller than the deterministic one. 

In other words, the conditions for I(t) to become 

extinct in the SDE epidemic model are weaker than 

in the classical deterministic epidemic model. We 

give the following example illustrates this result 

more explicitly. 

Example 3.3 For simplicity, let k = 2 and we 

choose the following system parameters  
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so the stochastic multi-group SIR model in Eq. (6) 
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(30) 

Clearly, if σ1 = σ2 = σI = σR = 0, Eq. (30) becomes to 

be the related deterministic multi-group SIR model 

and R0 > 1 so I1(t), I2(t) will tend to their endemic 

equilibrium. In Fig. 1, we start our numerical 

simulation with σ1 = 0.2, σ2 = 0.1, σI = σR = 0, and the 

initial value are I1(0) = 10, I2(0) = 20. Noting that 
SR0 <1, by Theorem 3.1, I1(t), I2(t) will tend to zero 

exponentially. Computer simulation in Fig.1 illustrates 

the extinction of disease. 

Next we keep the parameter value and start our 

computer simulation at the initial value I1(0) = I2(0) = 

1,we gain the same results in Fig. 2. 

If we decrease the environment intensity to σ1 = 

0.02, σ2= 0.01, σI = σR = 0 and starting from I1(0) = 

I2(0) = 1, which means SR0 >1. From Theorem 3.1, the 

disease-free equilibrium will be unstable, result of one 

simulation run in Fig. (3) proves our results. 

4. Stochastic Persistence 

For a deterministic model, persistence is implied by 

showing the endemic equilibrium is a global attractor. 

But for our stochastic model Eq. (6), there is no 

endemic equilibrium.  

In fact, the solution of our model is a process, if we 

can prove the process is positive recurrence relative to 

a positive domain, and then this conclusion implies 

the persistence of our stochastic model in stochastic 

version. Before proving the main result of this section, 

we give the concept of recurrence [40]. 

Definition 4.1 Let U be some bounded or 

unbounded domain, and we denote its complement U
c
 

by U1. A process X(t) is said to be recurrence relative 

to the domain U (or U−recurrence) if it is regular and 

foe every s, x ∈ U1. 

1}{, 
1U

xsp              (31) 

where, 1U  is the first exit time from U1. A recurrent 

process with finite mean recurrence time is said to be 

positive recurrent. 

The proof of positive recurrence result for the 

stochastic Eq. (6) is based upon the following lemma 

(see Theorem 3.12 in [41]). 

Lemma 4.2 A necessary and sufficient condition 

for positive recurrence with respect to a domain U = 

D × l ⊂ Rr 
× M is that for each I ∈ M, there exists a 

nonnegative function V(x, i) :D
c
→R such that V(x, i) is 

twice continuously differentiable and that 

.),(,1),LV( MDixix c           (32) 

Following theorem is the positive recurrence result 

for the stochastic system in Eq. (6). 

Theorem 4.3 Assume that B = (βij)n × n is irreducible 

and 10 SR . If the random perturbation coefficient satisfies, 

,
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then our model Eq. (6) is positive recurrence relative to 

a positive domain, where ,,( 11
  ISP  

),,,...,1

nnn RISR  is the endemic equilibrium of the 

related deterministic system of Eq.(1). 
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Fig. 1  Computer simulation of path I1(t), I2(t) for Eq. (30) and its corresponding deterministic model, using the EM method 

with step size 0.001, with initial valueI1(0) = 10, I2(0) = 20. The full line express stochastic model’s simulation, and the dotted 

line express the related deterministic model. 
 

   

Fig. 2  Computer simulation of path I1(t), I2(t) for Eq. (30) and its corresponding deterministic model, using the EM method 

with step size 0.001, with initial value I1(0) = 1 = I2(0) = 1. The full line express stochastic model’s simulation, and the dotted 

line express the related deterministic model. 
 

   

Fig. 3  Computer simulation of path I1(t), I2(t) for Eq. (30) and its corresponding deterministic model, using the EM method 

with step size 0.001, with initial value I1(0) =1, I2(0) = 1. The full line express stochastic model’s simulation and the dotted line 

express the related deterministic model. 



Extinction and Persistent of a Stochastic Multi-group SIR Epidemic Model 

 

20 

 

Proof. Since 1 < 
SR0  < R0, there is an endemic 

equilibrium ),,,,,(   nnn111 IESRISP  for the 

deterministic system of Eq. (15). We obtain the 

following equation  
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Using the same method as that for the proof of 

Theorem 3.3 [7], we choose ,,1 njkIS jkkjkj   ，  
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Calculating LV2 we obtain 
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Similarly, we can calculate LV3 
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Note that 

.,
)

)(2 22

R

R

kIS

k

kk
I

k

S

k
kk

I

k
d

d

dd
d 


 




 

It is clearly that 









),,,...,,,(lim

),,,...,(lim

111
,,

1,1,1
0,,

nnn
RIS

nnn
RIS

RISRISH

RISRISH

kkk

kkk

    (40) 

So there exists a domain U lies entirely in 
nR3

 . For 
n

nnn111 URISRIS 3
,, ),,,...,(  , LV < -M, where M is    

a positive constant. According to Lemma 4.2, the  
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Fig. 4  Frequency histograms of path I1(t), I2(t) for Eq. (30) based on 10000 stochastic simulations for each population at time 

t = 100, using the EM method with step size 0.001,with initial value I1(0) = 1, I2(0) = 1. 
 

solution of our model is positive recurrence related to 

the positive domain U. The proof is complete. 

Example 5.4 To substantiate the analytic findings 

above, we provide numerical simulation results for the 

stochastic model Eq. (30). We also use the same 

parameters in Example 3.3, and let σ1 = 0.02, σ2 = 

0.01,σI = σR = 0. We have shown in Fig. 3 that I1(t), 

I2(t) will not tend to 0, Theorem 4.3 tell us that the 

solution will recurrence relative to a positive domain. 

Fig. 4 shows histograms of the approximate 

distribution of the infective classes. 

5. Conclusions 

In this paper, we have considered the general 

multi-group SIR epidemic model which in presence of 

multiplicative noise terms to understand the dynamics 

in presence of environmental driving forces. First we 

guarantee the existence and uniqueness of positive 

global solution of our stochastic epidemic model. 

Then we find out a sharp threshold which determines 

the extinction or persistence of disease. Specifically, If 

1
0
SR , then the disease-free equilibrium will be 

asymptotically stable which means the disease will die 

out, if 1
0
SR , our model will positively recurrence 

to a positive domain which implies the persistence of 

our model. We need to point out that the sharp 

threshold we found is different from the related 

deterministic model’s threshold, it smaller then the 

deterministic one. It makes sense in biological 

systems, because it means the environment 

perturbation increase the parameter values of the 

extinction of disease. After the theoretic proof, we 

give some numerical examples to illustrate our results. 
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