Contact us
![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
Useful Links
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Article
Mathematical Model of Electric Vehicle Power Consumption for Traveling and Air-Conditioning
Author(s)
Seishiro Shibata and Tsuguhiko Nakagawa
Full-Text PDF
XML 2442 Views
DOI:10.17265/1934-8975/2015.03.006
Affiliation(s)
ABSTRACT
In order to make maximum use of the EV (electric vehicle) battery, evaluating the remaining battery capacity and the power consumption is important. Evaluation method of the remaining battery capacity with accuracy has been proposed. Moreover, the evaluation method of the power consumption for traveling has been proposed. However, the power consumption for vehicle-mounted air-conditioner is 30%. It is necessary to calculate the power consumption for both traveling and air-conditioning. In this paper, the authors have constructed a mathematical model which calculates the EV power consumption for both traveling and air-conditioning. The calculated results of this model have been compared to actual traveling data. In addition, factors which have a impact on the EV power consumption have been studied. As a result, the EV power consumption is greately varied by slope resistance, acceleration resistance and required air-conditioning load. Moreover, it is clarified that the air-conditioner consumes approximately 25% to 50% of the total power consumption in a hot summer day. In addition, the acceleration and the air-conditioning load differ depending on each vehicle driver. Therefore, in order to evaluate the EV power consumption practically, it is necessary to reflect the characteristics of each vehicle driver.
KEYWORDS
Electric vehicle, air-conditioner, energy consumption, mathematical model, cruising range
Cite this paper
References