![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
| Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Dopaminergic Susceptibility and Oxidative Stress: Mechanisms Contributing to Parkinson’s Disease
Xiyue Zhang
Full-Text PDF
XML 40 Views
DOI:10.17265/2159-5542/2025.06.002
Simon Fraser University, Burnaby, Canada
Parkinson’s disease (PD) features selective degeneration of substantia nigra pars compacta (SNpc) dopaminergic neurons, whose vulnerability is linked to chronic oxidative stress (OS). Dopamine metabolism, mitochondrial dysfunction, iron dysregulation, neuroinflammation, and impaired proteostasis converge to generate a self-reinforcing oxidative loop. This paper synthesizes peer-reviewed evidence on how dopamine’s redox chemistry, mitochondrial energetics, and inflammatory processes interact to drive neuronal injury. Figure 1 illustrates the oxidative cascade from dopamine oxidation to mitochondrial collapse, lipid peroxidation, and glial activation. Understanding these mechanisms clarifies how PD evolves as a system-level disorder where interdependent oxidative, metabolic, and disruptions amplify one another.
Parkinson’s Disease, Oxidative Stress, Dopamine, Iron, Protein, Interconnection and Mutual Reinforcement
Psychology Research, June 2025, Vol. 15, No. 6
Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366-375. Retrieved from https://doi.org/10.1016/0166-2236(89)90074-X
Chakrabarti, S., & Bisaglia, M. (2023). Oxidative stress and neuroinflammation in Parkinson’s disease: The role of dopamine oxidation products. Antioxidants, 12(4), 955. Retrieved from https://doi.org/10.3390/antiox12040955
Chang, K.-H., & Chen, C.-M. (2020). The role of oxidative stress in Parkinson’s disease. Antioxidants, 9(7), 597. Retrieved from https://doi.org/10.3390/antiox9070597
Chaudhuri, K. R., & Schapira, A. H. V. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. The Lancet Neurology, 8(5), 464-474. Retrieved from https://doi.org/10.1016/S1474-4422(09)70068-7
Devos, D., Labreuche, J., Rascol, O., Corvol, J.-C., Duhamel, A., Guyon-Delannoy, P., … FAIR-PARK II Study Group. (2022). Trial of deferiprone in Parkinson’s disease (FAIR-PARK II). The New England Journal of Medicine, 387(22), 2045-2055. Retrieved from https://doi.org/10.1056/NEJMoa2209254
Dexter, D. T., Wells, F. R., Agid, F., Agid, Y., Lees, A. J., Jenner, P., & Marsden, C. D. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. Journal of Neurochemistry, 52(6), 1830-1836. Retrieved from https://doi.org/10.1111/j.1471-4159.1989.tb07264.x
Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s Disease, 3(4), 461-491. Retrieved from https://doi.org/10.3233/JPD-130230
Dong-Chen, X., Liu, R., Zhang, H., Zhou, X., Zhao, L., Chen, T., & Wang, J. (2023). Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 8, 73. Retrieved from https://doi.org/10.1038/s41392-023-01353-3
Exner, N., Lutz, A.-K., Haass, C., & Winklhofer, K. F. (2012). Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. The EMBO Journal, 31(14), 3038-3062. Retrieved from https://doi.org/10.1038/emboj.2012.170
Hwang, O. (2013). Role of oxidative stress in Parkinson’s disease. Experimental Neurobiology, 22(1), 11-17. Retrieved from https://doi.org/10.5607/en.2013.22.1.11
Li, J., Wang, Y., Huang, J., & Gong, D. (2024). Knowledge mapping of ferroptosis in Parkinson’s disease: A bibliometric analysis (2012-2023). Frontiers in Aging Neuroscience, 16, 1433325. Retrieved from https://doi.org/10.3389/fnagi.2024.1433325
Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795. Retrieved from https://doi.org/10.1038/nature05292
Majkutewicz, I. (2022). Dimethyl fumarate: A review of preclinical efficacy in models of neurodegenerative diseases. European Journal of Pharmacology, 926, 175025. Retrieved from https://doi.org/10.1016/j.ejphar.2022.175025
Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., … Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 17013. Retrieved from https://doi.org/10.1038/nrdp.2017.13
Qin, Z., Hu, D., Han, S., Reaney, S. H., Di Monte, D. A., & Fink, A. L. (2007). Effect of 4-hydroxy-2-nonenal modification on α-synuclein aggregation. Journal of Biological Chemistry, 282(8), 5862-5870. Retrieved from https://doi.org/10.1074/jbc.M608126200
Tan, Y. Y., Wu, L., Chen, Z., & Feng, J. (2022). Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Clinical perspectives and challenges. Journal of Parkinson’s Disease, 12(2), 477-493. Retrieved from https://doi.org/10.3233/JPD-212976
Uruno, A., & Yamamoto, M. (2023). The KEAP1-NRF2 system and neurodegenerative diseases. Antioxidants & Redox Signaling, 38(13), 974-988. Retrieved from https://doi.org/10.1089/ars.2023.0234
Zhou, Z. D., Tan, E. K., & Lim, T. M. (2023). Role of dopamine in the pathophysiology of Parkinson’s disease: An updated synthesis. Translational Neurodegeneration, 12, 44. Retrieved from https://doi.org/10.1186/s40035-023-00378-6




