Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, Riyadh, P.O. Box 2460, Riyadh 11451, KSA

ABSTRACT

The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles (UAVs) is demonstrated in this study. The control unit includes design considerations of two controllers to provide robust stability, tracking of the proposed linear dynamics, an adequate set of proportional-integral-derivative (PID) controller gains, and a minimal cost function. The PID control and linear quadratic regulator (LQR) with or without full-state-observer were evaluated. An optimal control system is assumed to provide fast rise and settling time, minimize overshoot, and eliminate the steady-state error. The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink, in which the open-loop system was assessed in terms of flight robustness and reference tracking. The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant, maintain the sustainability of the dynamic flight model stability, and diminish the flight controller errors. The LQR provides robust stability, but it is not optimal in the transient phase of particular plant output. The PID control system can adjust the controller’s gains for optimal hovering (or stable slow flight) and is especially useful for the tracking system. Finally, comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time; in addition, all proposed controllers can be practically deployed as one UAV’s system, which can be handled as an exemplary model of the UAV flight management system.

KEYWORDS

Agricultural applications, cost function, dynamic model, PID & LQR controllers, steady-state error, UAV aircraft.

Cite this paper

Al-Dosary, N. M., 2023. "Functional Sustainability of a Flight Dynamics Control System for Stable Hovering Flight of an Unmanned Aerial Vehicle (UAV), such as in Agricultural Applications: Mathematical Modeling and Simulation " Journal of Agricultural Science and Technology A 13 (2023): 1-29.

References

[1]       Mazur, M. 2016. “Six Ways Drones Are Revolutionizing Agriculture.” MIT Technology Review. Posted on July 20, 2016. Accessed on June 17, 2022. https://www.technologyreview.com/2016/07/20/158748/six-ways-drones-are-revolutionizing-agriculture/.

[2]       Norasma, C. Y. N., Fadzilah, M. A., Roslin, N. A., Zanariah, Z. W. N., Tarmidi, Z., and Candra, F. S. 2019. “Unmanned Aerial Vehicle Applications in Agriculture.” In IOP Conference Series: Materials Science and Engineering. Philadelphia: IOP Publishing Ltd., 506. doi: 10.1088/1757-899X/506/1/012063.

[3]       Tokekar, P., Hook, J. V., Mulla, D., and Isler, V. 2013. “Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture.” In Proceedings of the IROS 2013: New Horizon, Conference Digest2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE International Conference on Intelligent Robots and Systems, Tokyo, 5321-6. https://doi.org/10.1109/IROS.2013.6697126.

[4]       Giles, D. K., and Billing, R. C. 2015. “Deployment and Performance of a UAV for Crop Spraying.” Chemical Engineering Transactions 44: 307-12. doi: 10.3303/CET1544052.

[5]       Ju, C., and Son, H. 2018. “Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation.” Electronics 7 (9): 162. doi: 10.3390/electronics7090162.

[6]       Hasan, K. M., Suhaili, W. S., Shah Newaz, S. H., and Ahsan, M. S. 2020. “Development of an Aircraft Type Portable Autonomous Drone for Agricultural Applications.” In Proceedings of the 2020 International Conference on Computer Science and its Application in Agriculture (ICOSICA), Bogor, Indonesia, 1-5. doi: 10.1109/ICOSICA49951.2020.9243257.

[7]       Wang, L., Huang, X., Li, W., Yan, K., Han, Y., Zhang, Y., Pawlowski, L., and Lan, Y. 2022. “Progress in Agricultural Unmanned Aerial Vehicles (UAVs) Applied in China and Prospects for Poland.” Agriculture 12 (3): 397. https://doi.org/10.3390/agriculture12030397.

[8]       Yuan, W., Hua, W., Heinemann, P. H., and He, L. 2023. “UAV Photogrammetry-Based Apple Orchard Blossom Density Estimation and Mapping.” Horticulturae 9 (2), 266: 1-22. https://doi.org/10.3390/horticulturae9020266.

[9]       Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., and Moscholios, I. 2020. “A compilation of UAV Applications for Precision Agriculture.” Computer Networks 172: 107148. https://doi.org/10.1016/j.comnet.2020.107148.

[10]    Chen, J., Li, D., Jiang, X., and Sun, X. 2006. “Adaptive Feedback Linearization Control of a Flexible Spacecraft, Intelligent Systems Design and Applications.” In Proc. of Sixth International Conference on Intelligent Systems Design and Applications, 16-18 October 2006, Jinan, China, 225-30. doi: 10.1109/ISDA.2006.253837.

[11]    Salih, A. L., Moghavvemi, M., Mohamed, H. A. F., and Gaeid, K. S. 2010. “Flight PID Controller Design for a UAV Quadrotor.” Scientific Research and Essays 5: 3360-7.

[12]    Argentim, L. M., Rezende, W. C., Santos, P. E., and Aguiar, R. A. 2013. “PID, LQR and LQR-PID on a Quadcopter Platform.” In Proceedings of the International Conference on Informatics 2013, Informatics Electronics & Vision (ICIEV), 1-6.

[13]    Noshahri, H., and Kharrati, H. 2014. “PID Controller Design for Unmanned Aerial Vehicle Using Genetic Algorithm.” In Proceedings of 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 213-7. doi: 10.1109/ISIE.2014.6864613.

[14]    Khatoon, S., Gupta, D., and Das, L. K. 2014. “PID & LQR Control for a Quadrotor: Modeling and Simulation.” In Proceedings of International Conference on Advances in Computing 2014, Communications and Informatics (ICACCI), New Delhi, India, 796-802. doi: 10.1109/ICACCI.2014.6968232.

[15]    Oktay, T., and Kose, O. 2019. “Dynamic Modeling and Simulation of Quadrotor for Different Flight Conditions.” European Journal of Science and Technology 15: 132-42. doi: 10.31590/ejosat.507222.

[16]    Nguyen, H. T., Quyen, T. V., Nguyen, C. V., Le, A. M., Tran, H. T., and Nguyen, M. T. 2020. “Control Algorithms for UAVs: A Comprehensive Survey.” EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 7 (23): 1-11. doi: 10.4108/eai.18-5-2020.164586.

[17]    Chen, Z., and Jia, H. 2020. “Design of Flight Control System for a Novel Tilt-Rotor UAV.” Hindawi-Complexity 2020: 1-14. Article ID 4757381. https://doi.org/10.1155/2020/4757381.

[18]    Yinka-Banjo, C. O., and Ajayi, O. 2019. Autonomous Vehicles: Sky Farmers: Applications of Unmanned Aerial Vehicle (UAV) in Agriculture, edited by G. Dekoulis. Rijeka: IntechOpen, 107-28. doi: 10.5772/intechopen.89488. https://www.intechopen.com/
books/autonomous-vehicles/sky-farmers-applications-of-unmanned-aerial-vehicles-uav-in-agriculture.

[19]    Wang, L., Lan, Y., Zhang, Y., Zhang, H., Tahir, M. N., Ou, S., Liu X., and Chen, P. 2019. “Applications and Prospects of Agricultural Unmanned Aerial Vehicle Obstacle Avoidance Technology in China.” Sensors 19 (3): 1-16. https://doi.org/10.3390/s19030642.

[20]    Kim, J., Kim, S., Ju, C., and Son, H. 2019. “Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications.” IEEE Access 7: 105100-15. doi: 10.1109/ACCESS.2019.2932119.

[21]    Kok, K. Y., and Rajendran, P. 2015. “Enhanced Longitudinal Motion Control of UAV Simulation by Using P-LQR Method.” International Journal of Micro Air Vehicles 7 (2): 203-10. doi: 10.1260/1756-8293.7.2.203.

[22]    Rahimi, M. R., Hajighasemi, S., and Sanaei, D. 2013. “Designing and Simulation for Vertical Moving Control of UAV System Using PID, LQR and Fuzzy Logic.” International Journal of Electrical and Computer Engineering 3 (5): 651-9. doi: 10.11591/ijece.v3i5.3440.

[23]    Matlab, MATrix LABoratory. 2022. MathWorks®, Control System Toolbox, R2022b. Natick: The MathWorks, Inc. https://www.mathworks.com/help/control/index.html.

[24]    MacKunis, W., Kaiser, M. K., Patre, P. M., and Dixon, W. E. 2008. “Asymptotic Tracking for Aircraft via an Uncertain Dynamic Inversion Method.” In Proceedings of the 2008 American Control Conference, ThC16.5, Seattle, June 11-13 2008, WA, USA, 3482-7.

[25]    McCarthy, M. A. 1997. “Simulation in Undergraduate Education (A Case Study Using MATLAB).” In Proceedings of the Third International Conference on Computer Based Learning in Science, Leicester, UK, J1-1 to J1-11. doi: 10.13140/RG.2.1.4771.4329.

[26]    Kumar, N., and Jain, S. 2014. “Identification, Modeling and Control of Unmanned Aerial Vehicles.” International Journal of Advanced Science and Technology 67: 1-10. doi: 10.14257/ijast.2014.67.01.

[27]    Houari, A., Bachir, I., Mohamed, D. K., and Mohamed, M. K. 2020. “PID vs. LQR Controller for Tilt Rotor Airplane.” International Journal of Electrical and Computer Engineering 10 (6): 6309-18. doi: http://doi.org/10.11591/ijece.v10i6.pp6309-6318.

[28]    Kok, K. Y., Rajendran, P., and Wee, L. 2016. “Proportional-Derivative Linear Quadratic Regulator Controller Design for Improved Longitudinal Motion Control of Unmanned Aerial Vehicles.” International Journal of Micro Air Vehicles 8 (1): 41-50. doi: 10.1177/1756829316638210.

[29]    Ahmed, S. F., Kadir, K., and Joyo, M. K. 2016. “LQR Based Controller Design for Altitude and Longitudinal Movement of Quad-Rotor.” Journal of Applied Sciences 16 (12): 588-93. doi: 10.3923/jas.2016.588.593.

[30]    Gao, Z., Miklosovic, R., Radke, A., Zhou, W., and Zheng, Q. 2007. “Controllers, Observers, and Applications Thereof.” World Intellectual Property Organization, International Bureau, US WO 2007/035559 A2, USA. https://patents.google.com/patent/WO2007035559A2/en.

[31]    Gao, Z., Miklosovic, R., Radke, A., Zhou, W., and Zheng, Q. 2011. “Controllers, Observers, and Applications Thereof.” U.S. Patent Documents, U.S. Patent No. US 8,060,340 B2, Nov. 15, 2011, Sheet 52 of 52, US 8,060,340 B2, USA. https://core.ac.uk/download/pdf/10564584.pdf.

[32]    Saeed, A., Ali, S. U., and Shah, M. Z. 2016. “Linear Control Techniques Application and Comparison for a Research UAV Altitude Control.” In Proceedings of the 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 12th-16th January 2016, Islamabad, Pakistan. doi: 10.1109/IBCAST.2016.7429866.

[33]    Al-Isawi, M. M. A., Attiya, A., and Adoghe, J. O. 2020. “UAV Control Based on Dual LQR and Fuzzy-PID Controller.” Al-Khawarizmi Engineering Journal 16 (3): 43-53. doi: 10.22153/kej.2020.08.001.

[34]    Ziegler, J. G., and Nichols, N. B. 1942. “Optimum Settings for Automatic Controllers.” Transactions of the ASME 64: 759-68.

[35]    Guerrero, J., Pacioselli, C., Pralits, J. O., Negrello, F., Silvestri, P., and Bottaro, A. 2013. “Preliminary Design of a Small-Sized Flapping UAV: II. Aerodynamic Performance and Flight Stability.” In Proceedings of the Conference AIMETA 2013, Torino, Italy.

[36]    Caughey, D. A. 2011. “Introduction to Aircraft Stability and Control: Course Notes for M&AE 5070.” M.Sc. thesis, Cornell University. https://courses.cit.cornell.edu/mae5070/Caughey_2011_04.pdf

[37]    Levine, W. S. 2000. Control System Fundamentals (1st ed.). Boca Raton, London, New York: CRC Press, 216. ISBN: 0-8493-0053-3.

[38]    Bolton, W. 2015. Instrumentation and Control Systems: Frequency Response (Ch. 11) (2nd Ed.). Amsterdam, the Netherlands: Elsevier Ltd., 252-81. ISBN: 978-0-08-100613-9. https://www.sciencedirect.com/topics/engineering/phase-crossover-frequency,                       doi: https://doi.org/10.1016/B978-0-7506-6432-5.X5000-1, https://doi.org/10.1016/B978-075066432-5/50011-5.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]