Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Department of Plant Pathology, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya 224229 (U.P.), India
2. Department of Plant Molecular Biology and Genetic Engineering, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya 224229 (U.P.), India
3. Division of Plant Pathology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012 India

ABSTRACT

Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities. The important factors affecting the occurrence and spread of the plant diseases are temperature, moisture, light, and CO2 concentration. These factors cause physiological changes in plants that result in increase in intensity of crop diseases. Climate change causes a significant impact on germination, reproduction, sporulation and spore dispersal of pathogens. Climate change affects all life stages of the pathogen as well as its host to cause impact on host-pathogen interaction which facilitates the emergence of new races of the pathogen ultimately breakdowns the host resistance. It also affects the microbial community in the soil which is beneficial to the plants in various aspects. The minor diseases become major ones due to alteration in climatic parameters thus posing a threat to the food security.

KEYWORDS

Climate change, greenhouse gases, temperature, elevated CO2, pathogens, sporulation.

Cite this paper

Maurya, M. K., Yadav, K. V., Singh, S. P., Jatoth, R., Singh, H. K., and Singh, D. 2022. "Impact of Climate Change on Diseases of Crops and Their Management—A Review." Journal of Agricultural Science and Technology B 12 (2022): 1-15.

References

[1]       Savary, S., Ficke, A., Aubertot, J. N., and Hollier, C. 2012. Crop Losses due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Security 4: 519-37.

[2]       IPCC. 2007. Climate Change 2007: Synthesis Report. Contributing of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri, and A. Reisinger. Geneva, Switzerland: IPCC, 104.

[3]       Mahato, A. 2014. Climate Change and Its Impact on Agriculture. Int. J. Scientific and Res Publica. 4 (4): 18-26.

[4]       Mbow, C., Rosenzweig, C., Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., Liwenga, E., Pradhan, P., Rivera-Ferre, M. G., Sapkota, T., Tubiello, F. N., and Xu, Y. 2019. Food Security. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, edited by P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi and J. Malley.

[5]       Fanzo, J., McLaren, R., Davis, C., and Choufani, J. 2017. Climate Change and Variability: What Are the Risks for Nutrition, Diets, and Food Systems? In IFPRI, 1-128.

[6]       Agrios, G. N. 2005. Plant Pathology (5th ed.). San Diego, USA: Elsevier Academic Press, 922.

[7]       Chakraborty, S. 2005. Potential Impact of Climate Change on Plant-Pathogen Interactions. Australasian Plant Pathology 34: 443-8.

[8]       Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. 2004. Emerging Infectious Diseases of Plants: Pathogen, Pollution, Climate Change and Agrotechnology Drivers. Trends Ecological Evolution 19: 535-44.

[9]       Bergot, M., Cloppet, E., Perarnaud, V., De Que, M., Marcais, B., and Desprez-Loustau, M. L. 2004. Simulation of Potential Range Expansion of Oak Disease Caused by Phytophthora cinnamomi under Climate Change. Global Change Biology 10: 1539-52.

[10]    Kashyap, P. L., Rai, P., Kumar, S., Chakdar, H., and Srivastava, A. K. 2017. DNA Barcoding for Diagnosis and Monitoring of Fungal Plant Pathogens. In Molecular Markers in Mycology, Fungal Biology, edited by B. P. Singh, and V. K. Gupta. Switzerland: Springer International Publishing, 87-122.

[11]    Sharma, S., Rai, P., Rai, S., Srivastava, M., Kashyap, P. L., Sharma, A., and Kumar, S. 2017. Genomic Revolution in Crop Disease Diagnosis: A Review. In Plants and Microbes in an Ever Changing Environment, edited by S. S. Singh. New York: Nova Science Publishers, 257-93.

[12]    Das, T., Hajong, M., Majumdar, D., Tombisana Devi, R. K., and Rajesh, T. 2016. Climate Change Impacts on Plant Diseases. SAARC J. Agric. 14 (2): 200-9.

[13]    IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Pachauri and L. Meyer. Geneva, Switzerland, 151.

[14]    Legreve, A., and Duveiller, E. 2010. Preventing Potential Diseases and Pest Epidemics under a Changing Climate. In Climate Change and Crop Production, edited by M. P. Reynolds. Wallingford: CABI, 50-70.

[15]    Yang, L. N., Zhu, W., Wu, E. J., Yang, C., Thrall, P. H., Burdon, J. J., Jin, L. P., Shang, L. P., and Zhan, J. 2016. Trade-Offs and Evolution of Thermal Adaptation in the Irish Potato Famine Pathogen. Molecular Ecol. 25: 4047-58.

[16]    Kocmankova, E., Trnka, M., Juroch, J., Dubrovsky, M., Semeradova, D., Mozny, M., and Zalud, Z. 2009. Impact of Climate Change on the Occurrence and Activity of Harmful Organisms. Plant Protec. Sci. 45: S48-52.

[17]    Thompson, M., Gamage, D., Hirotsu, N., Martin, A., and Seneweera, S. 2017. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Frontiers in Physiol. 8: 578.

[18]    Walkelin, S. A., Gallego, M. G., Jones, E., Smaill, S., Lear, G., and Lambie, S. 2018. Climate Change Induced Drought Impacts on Plant Diseases in New Zealand. Austra. Plant Pathol. 47: 101-14.

[19]    Loustau, M. L. D., Marcais, B., Nageleisen, L. M., Piou, D., and Vannini, A. 2006. Interactive Effects of Drought and Pathogens in Forest Trees. Annals of Fruit Sci. 63 (6): 597-612.

[20]    Andre, C., Christin, D., Castroverde, M., and Sheng, Y. H. 2018. Plant Pathogen Walfare under Changing Climate Conditions. Curr. Biol. 28 (10): 619-34.

[21]    Chakraborty, S., and Datta, S. 2003. How Will Plant Pathogens Adapt to Host Plant Resistance at Elevated CO2 under a Changing Climate? New Phytol. 159: 733-42.

[22]    Ladányi, M., and Horvath, L. 2010. A Review of the Potential Climate Change Impact on Insect PopulationsGeneral and Agricultural Aspects. Appl. Ecological Enviro. Res. 8 (2): 143-52.

[23]    Li, J., Lin, X., Chen, A., Peterson, T., Ma, K., Bertzky, M., Clais, P., Kapos, V., Peng, C., and Polter, D. 2013. Global Priority Conservation Areas in the Face of 21st Century Climate Change. Plos ONE 8 (1): e54389.

[24]    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R. 2014. Abiotic and Biotic Stress Combination. New Phytol. 203 (1): 32-43.

[25]    Ashoub, A., Baeumlisberger, M., Neupaerti, M., Karas, M., and Bruggeman, W. 2015. Characterization of Common and Distinctive Adjustments of Wild Barley Leaf Proteome under Drought Acclimation Heat Stress and Their Combination. Plant Molecular Biology 87 (45): 459-71.

[26]    McElrone, A. J., Reid, C. D., Hoye, K. A., Hart, E., Jackson, R. B. 2005. Elevated CO2 Reduces Disease Incidence and Severity of a Red Maple Fungal Pathogen via Changes in Host Physiology and Leaf Chemistry. Global Change Biol 11: 1828-36.

[27]    Prank, M., Kenaley, S. C., Bergstrom, G. C., Acevedo, M., and Mahowald, N. M. 2019. Climate Change Impacts the Spread Potential of Wheat Stem Rust: A Significant Crop Disease. Environ. Res Lett 14 (12): 124053. doi: 10.1088/1748-9326/ab57de.

[28]    Oerke, E. C. 2006. Crop Losses to Pests. J Agric. Sci 144: 31-43.

[29]    Dixon, G. R. 2012. Climate ChangeImpact on Crop Growth and Food Production, and Plant Pathogens. Can. J. Plant Pathol. 34: 362-79.

[30]    Madden, L. V., Hughes, G., and Bosch, F. V. 2007. The Study of Plant Disease Epidemics. St Paul, MN: The American Phytopathological Society Press.

[31]    Siebold, M., and von Tiedemann, A. 2012. Potential Effects of Global Warming on Oilseed Rape Pathogens in Northern Germany. Fungal Ecol. 5: 62-72.

[32]    Schaad, N. W. 2008. Emerging Plant Pathogenic Bacteria and Global Warming. In Pseudomonas syringae Pathovars and Related PathogensIdentification Epidemiology and Genomics, edited by M. B. Fatmi, A. Collmer, N. S. Iacobellis, J. W. Masfield, J. Murillo, N. W. Schaad, and M. Ulrich. Dordrecht: Springer, 369-70.

[33]    Singh, D., Yadav, D. K., Sinha, S., and Choudhary, G. 2013. Effect of Temperature, Cultivars, Injury of Root and Inoculums Load of Ralstonia solanacearum to Cause Bacterial Wilt of Tomato. Archives of Phytopathology and Plant Protection 47 (13): 1574-83. http://dx.doi.org/10.1080/03235408.2013.851332.

[34]    Mina, U., and Sinha, P. 2008. Effects of Climate Change on Plant Pathogens. Environmental News 14 (4): 6-10.

[35]    Pareek, A., Meena, B. M., Sharma, S., Tetarwal, M. L., Kalyan, R. K., and Meena, B. L. 2017. Impact of Climate Change on Insect Pests and Their Management Strategies. In Climate Change and Sustainable Agriculture. Pitam Pura, New Delhi: New India Publishing Agency, 253-86.

[36]    Coakley, S. M., Scherm, H., and Chakraborty, S. 1999. Climate Change and Plant Disease. Annu. Rev. Phytopathol. 37: 399-426.

[37]    Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S., and Cassman, K. G. 2004. Rice Yields Decline with Higher Night Temperature from Global Warming. Proceeding in National Academic Sciences, U.S.A. 101: 9971-5.

[38]    Neilson, R., and Boag, B. 1996. The Predicted Impact of Possible Climatic Change on Virus-Vector Nematodes in Great Britain.” Eur. J. Plant Pathol. 102: 193-9.

[39]    Matos, A. P., Cabral, J. R. S., Sanches, N. F., and Caldas, R. C. 2000. Effect of Temperature and Rainfall on the Incidence of Fusarium subglutinans on Pineapple Fruits. Acta Horticulturae 529: 265-72.

[40]    Yang, X. B., Sun, P., and Hu, B. H. 1998. Decadal Change of Plant Diseases as Affected by Climate in Chinese Agro Ecosystems. In Proceedings of the 7th International Congress of Plant Pathology, Edinburgh, Scotland, UK.

[41]    Boland, G. J., Melzer, M. S., Hopkin, A., Higgins, V., and Nassuth, A. 2004. Climate Change and Plant Diseases in Ontario. Can. J. Plant Pathol. 26 (3): 335-50.

[42]    Milus, E. A., Seyran, E., and McNew, R. 2006. Aggressiveness of Puccinia striiformis f. sp. tritici Isolates in the South-Central United States. Plant Dis. 90 (7): 847-52.

[43]    Jesus Júnior, W. C., Cecilio, R. A., Valadares Júnior, R., Cosmi, F. C., and Moraes, W. B. 2007. Aquecimento Global E O Potencial Impacto Na Cultura E Doenças Do Mamoeiro.” In Papaya Brazil-manejo, qualidade e mercado do mamão, edited by D. Martins, A. N. Costa, and A. F. S. Costa. Vitória: Incaper, 83-100. (in Portuguese)

[44]    Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., and Rahkonen, A. 2007. LateBlight Epidemics on Potato in Finland, 1933-2002; Increased and Earlier Occurrence of Epidemics Associated with Climate Change and Lack of Rotation. Plant Pathol. 56 (1): 167-76.

[45]    Ghini, R., Hamada, E., and Bettiol, W. 2008. Climate Change and Plant Diseases. Scientia Agricola 65: 98-107.

[46]    Shin, J. W., and Yun, S. C. 2010. Elevated CO2 and Temperature Effects on the Incidence of Four Major Chili Pepper Diseases. Plant Pathol. J. 26 (2): 178-84.

[47]    Pugliese, M., Gullino, M. L., and Garibaldi, A. 2011. Effect of Climate Change on Infection of Grapevine by Downy and Powdery Mildew under Controlled Environment. Commun. Agric. and Appl Biol. Sci. 76: 2.

[48]    Matic, S., Cucu, M. A., Garibaldi, A., and Gullino, M. L. 2018. Combined Effect of CO2 and Temperature on Wheat Powdery Mildew Development. Plant Pathol. J. 34 (4): 136-326.

[49]    Kaur, S., Barakat, R., Kaur, J., and Epstein, L. 2021. The Effect of Temperature on Disease Severity and Growth of Fusarium oxysporum f. sp. apii Races 2 and 4 in Celery. Phytopathology 112 (2): 364-72. https://doi.org/10.1094/PHYTO-11-20-0519-R.

[50]    Desprez-Loustau, M. L., Marçais, B., Nageleisen, L.-M., Piou, D., and Vannini, A. 2006. Interactive Effects of Drought and Pathogens in Forest Trees. Ann Forest Sci. 63: 597-612.

[51]    Elad, Y., and Pertot, I. 2014. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop Improvement 28: 99-139.

[52]    Sturrock, R. N., Frankel, S. J., Brown, A., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J., and Woods, A. J. 2011. Climate Change and Forest Diseases. Plant Pathol. 60: 133-49.

[53]    Olsen, A. J., Pataky, J. K., Darcy, C. J., and Ford, R. E. 1990. Effects of Drought Stress and Infection by Maize Dwarf Mosaic Virus (MDMV) in Sweet Corn. Plant Dis. 74: 147-51.

[54]    Clover, G. R. G., Smith, H. G., Azam-Ali, S. N., and Jaggard, K. W. 1999. “The Effects of Drought on Sugar Beet Growth in Isolation and in Combination with Beet Yellows Virus (BYV) Infection.” J. Agri. Sci. 133: 251-61.

[55]    Garbelotto, M., Linzer, L., Nicolotti, G., and Gonthier, P. 2010. Comparing the Influences of Ecological and Evolutionary Factors on the Successful Invasion of a Fungal Forest Pathogen. Biol. Invasions 12: 943-57.

[56]    Dong, J. L., Gruda, N., Lam, S. K., Li, X., and Duan, Z. Q. 2018. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front Plant Sci. 9: 924. doi: 10.3389/Fpls.2018.00924.

[57]    Ainsworth, E. A., and Long, S. P. 2005. What Have We Learned from 15 Years of Free-Air CO2 Enrichment (FACE)? A Meta-Analytic Review of the Responses of Photosynthesis, Canopy Properties and Plant Production to Rising CO2.New Phytol. 165: 351-72.

[58]    Chakraborty, S. 2013. Migrate or Evolve: Options for Plant Pathogens under Climate Change. Global Change Biology 19: 1985-2000.

[59]    Vary, Z., Mullins, E., Mcelwain, J. C., and Doohan, F. M. 2015. The Severity of Wheat Diseases Increases when Plants and Pathogen Are Acclimatized to Elevated Carbon Dioxide. Global Change Biology 21: 2661-9.

[60]    Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., and Mcelrone, A. J. 2010. Elevated Atmospheric Carbon Dioxide and Ozone Alter Soybean Disease at Soy FACE. Global Change Biol. 16: 320-30.

[61]    Debela, C., and Tola, M. 2018. Effect of Elevated CO2 and Temperature on Crop-Disease Interactions under Rapid Climate Change. Int. J. Envir. Sci. and Natural Res. 13 (1): 1-7. doi: 10.19080/IJESNR.2018.13.551358.

[62]    Pickles, B. J., Genney, D. R., Anderson, I. C., and Alexander, I. J. 2012. Spatial Analysis of Ectomyccorhizal Fungi Reveals That Root Tip Communities Are Structured by Competitive Interaction. Molecular Ecol. 21 (20): 5110-23.

[63]    Chakraborty, S., Murray, G., and White, N. 2002. Impact of Climate Change on Important Plant Diseases in Australia. A Report for the Rural Industries Research and Development Corporation, RIRDC Publication No. W02/010, RIRDC Project No CST-4A.

[64]    Dalla Pria, M., Christiano, R. C. S., Furtado, E. L., Amorim, L., and Bergamin, F. A. 2006. Effect of Temperature and Leaf Wetness Duration on Infection of Sweet Oranges by Asiatic Citrus Canker. Plant Pathol. 55: 657-63.

[65]    Lake, J. A., and Wade, R. N. 2009. Plant-Pathogen Interactions and Elevated CO2: Morphological Changes in Favour of Pathogens. J. Experimental Bot. 60: 3123-31.

[66]    Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., and Kobayashi, K. 2006. Effects of Elevated Atmospheric CO2 Concentration on the Infection of Rice Blast and Sheath Blight. Ecol. and Epidemiol. 96 (4): 425-31.

[67]    Gória, M. M., Ghini R., and Bettiol, W. 2013. Elevated Atmospheric CO2 Concentration Increases Rice Blast Severity. Tropical Plant Pathol. 38 (3): 253-7.

[68]    Li, X., Sun, Z., Shao, S., Zhang, S., Ahammed, G. J., Zhang, G., Jiyang, Y., Zhou, J., Xia, X., Zhou, Y., Yu, J., and Shi, K. 2015. Tomato-Pseudomonas syringae Interactions under Elevated CO2 Concentration: The Role of Stomata. J. Experimental Bot. 66: 307-16.

[69]    Karnosky, D. F., Percy, K. E., and Xiang, B. X. 2002. Interacting Elevated CO2 and Tropospheric O3 Predisposes Aspen (Populus tremuloides Michx.) to Infection by Rust (Melampsora medusae f. sp. tremuloidae). Global Change Biol. 8: 329-38.

[70]    Yeates, G. W., Newton, P. C. D., and Ross, D. J. 2003. Significant Changes in Soil Microfauna in Grazed Pasture under Elevated Carbon Dioxide. Biology and Fertility of Soils 38 (5): 319-26.

[71]    Yeates, G. W., Tate, K. R., and Newton, P. C. D. 1997. Response of the Fauna of a Grassland Soil to Doubling of Atmospheric Carbon Dioxide Concentration. Biology and Fertility of Soils 25 (3): 307-15.

[72]    Ayers, E., Wall, D. H., Simmons, B. L., Field, C. B., Milchunas, D. G., Morgan, J. A., and Roy, J. 2008. Belowground Nematode Herbivores Are Resistant to Elevated Atmospheric CO2 Concentrations in Grassland Eco-Systems. Soil Biol. and Biochem. 40: 978-85.

[73]    Manning, W. J., and Tiedemann, A. V. 1995. Climate Change: Potential Effects of Increased Atmospheric Carbon Dioxide (CO2), Ozone (O3), and Ultraviolet-B (UVB) Radiation on Plant Diseases. Environ Pollution, 88: 219-45.

[74]    Zhou, Y., Vroegop-Vos, I., Schuurink, R. C., Pieterse, C. M. J., and Wees, S. C. M. V. 2017. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. Front. Plant Sci. 8: Article 700. doi: 10.3389/fpls.016.01680.

[75]    Hibberd, J. M., Whitbread, R., and Farrar, J. F. 1996. Effect of 700 μmol mol-1 CO2 and Infection with Powdery Mildew on the Growth and Carbon Partitioning of Barley. New Phytol. 134 (2): 309-15.

[76]    Zhou, Y., Leeuwen, S. K. V., Pieterse, C. M. J., Bakker, P. A. H. M., and Wees, S. C. M. V. 2019. Effects of Atmospheric CO2 on Defense against Leaf and Root Pathogen of Arabidopsis. Eur. J. Pl. Pathol. 154: 31-42.

[77]    Pugliese, M., Gullino, M. L., and Garibaldi, A. 2010. Effects of Elevated CO2 and Temperature on Interactions of Grapevine and Powdery Mildew: First Result under Phytotron Condition. J. Plant Dis. Protec. 117 (1): 9-14.

[78]    Pugliese, M., Cogliati, E., Gullino, M. L., and Garibaldi, A. 2012. Effect of Climate Change on Alternaria Leaf Spot of Rock Salad and Black Spot of Basil under Controlled Environment. Commun Agric. and Appl. Biol. Sci. 77 (3): 241-4.

[79]    Pugliese, M., Liu, J., Titone, P., Garibaldi, A., and Gullino, M. L. 2012. Effects of Elevated CO2 and Temperature on Interactions of Zucchini and Powdery Mildew. Phytopathol. Medit. 51 (3): 480-7.

[80]    Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., and Rahkonen, A. 2007. “Late Blight Epidemics on Potato Ion Finland, 1933-2002; Increased and Earlier Occurrence of Epidemics Associated with Climate Change and Lack of Rotation. Pl. Pathol. 56 (1): 167-76.

[81]    Jwa, N. S., and Walling, L. L. 2001. Influence of Elevated CO2 Concentration on Disease Development in Tomato. New Phytol. 149: 509-18.

[82]    Tiedemann, A. V., and Firsching, K. H. 2000. Interactive Effects of Elevated Ozone and Carbon Dioxide on Growth and Yield of Leaf Rust-Infected Versus Non-infected Wheat. Environ. Pollution 108 (3): 357-63.

[83]    Gilardi, G., Pugliese, M., Chitarra, W., Ramon, I., Gullino, M. L., and Garibaldi, A. 2016. Effect of Elevated Atmospheric CO2 and Temperature Increases on the Severity of Basil Downy Mildew Caused by Peronospora belbahrii under Phytotron Conditions. J. Phytopathol. 164: 114-21.

[84]    Gullino, M. L., Gilardi, G., and Garibaldi, A. 2017. Effect of a Climate Change Scenario on Fusarium equiseti Leaf Spot on Wild Rocket and Radish under Phytotron Simulation. Phytoparasitica 46: 124-9.

[85]    Khan, M. R., and Rizvi, T. F. 2020. Effect of Elevated Levels of CO2 on Powdery Mildew Development in Five Cucurbit Species. Scientific Reports 10: 4986.

[86]    Bhatia, A., Mina, U., Kumar, V., Tomer, R., Kumar, A., Chakrabarti, B., Singh, R. N., and Singh, B. 2021. Effect of Elevated Ozone and Carbon Dioxide Interaction on Growth, Yield, Nutrient Content and Wilt Disease Severity in Chickpea Grown in Northern India. Heliyon 7: e06049.

[87]    Salinari, F., Giosue, S., Tubiello, F. N., Rettori, A., Rossi, V., Spanna, F., Rosenzweig, C., and Gullino, M. L. 2006. Downy Mildew (Plasmopara viticola) Epidemics on Grapevine under Climate Change. Global Change Biol. 12: 1299-307.

[88]    Deimel, H., and Hoffmann, G. M. 1991. Detrimental Effects of Net Blotch Disease of Barley Plants Caused by Drechslera teres (Sacc.) Shoemaker. J. Plant Dis. Protec. 98: 137-61.

[89]    Khan, A. U., and Khan, I. S. 1992. Incidence and Severity of Cucurbit Powdery Mildew in Uttar Pradesh. Indian Phytopath. 45 (2): 190-3.

[90]    Bendek, C. E., Campbell, P. A., Torres, R., Donoso, A., and Latorre, B. A. 2007. The Risk Assessment Index in Grape Powdery Mildew Control Decisions and the Effect of Temperature and Humidity on Conidial Germination of Erysiphe necator. Spanish J. Agric. Res. 5 (4): 522-32.

[91]    Islam, T. M. D., and Toyota, K. 2004. Effect of Moisture Conditions and Pre-incubation at Low Temperature on Bacterial Wilt of Tomato Caused by Ralstonia solanacearum. Microbes Environ. 19: 244-7.

[92]    Juroszek, P., and Tiedemann, A. V. 2011. Potential Strategies and Future Requirements for Plant Disease Management under a Changing Climate. Plant Pathol. 60: 100-12.

[93]    Bidzinski, P., Ballini, E., Ducasse, A., Michel, C., Zuluaga, P., Genga, A., Chiozzotto, R., and Morel, J. B. 2016. Transcriptional Basis of Drought Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae. Front. Plant Sci. 7: 1558.

[94]    Johansen, T. J., Dees, M. W., and Hermansen, A. 2015. High Soil Moisture Reduces Common Scab Caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in Potato. Acta Agric. Scand. B 65: 193-8.

[95]    Evans, N., Baierl, A., Semenov, M. A., Gladders, P., and Fitt, B. D. L. 2008. Range and Severity of a Plant Disease Increased by Global Warming. J. Royal Soc. Interface 5: 525-31.

[96]    Jung, T. 2009. Beech Decline in Central Europe Driven by the Interaction between Phytophthora Infections and Climatic Extremes. Forest Pathol. 39: 73-94.

[97]    Chakraborty, S., and Newton, A.C. 2011. Climate Change, Plant Diseases and Food Security: An Overview. Plant Pathol. 60: 2-14.

[98]    Stern, N. 2007. The Economics of Climate Change: The Stern Review. Cambridge, UK: Cambridge University Press, 712.

[99]    Atkinson, N. J., and Urwin, P. E. 2012. The Interaction of Plant Biotic and Abiotic Stresses from Genes to the Field. J. Exp. Bot. 63: 3523-43.

[100] Rejeb, I. B., Pastor, V., and Mauch-Mani, B. 2014. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 3: 458-75.

[101] Prasch, C. M., and Sonnewald, U. 2013. Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. J. Plant Physiol. 162 (4):1849-66.

[102] Clarkson, J. P., Fawcett, L., Anthony, S. G., and   Young, C. 2014. A Model for Sclerotinia   sclerotiorum Infection and Disease Development in Lettuce, Based on the Effects of Temperature, Relative Humidity and Ascospore Density. PLoS One 9 (4): e94049.

[103] Ciliberti, N., Fermaud, M., Roudet, J., and Rossi, V. 2015. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. J. Phytopathol. 105 (8): 1090-6.

[104] Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L. 2002. Increasing Risk of Great Floods in a Changing Climate. Nature 415: 514-7.

[105] Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A. 2003. Fingerprints of Global Warming on Wild Animals and Plants. Nature 421: 57-60.

[106] Rosenzweig, C., Strzepek, K. M., Major, D. C., Iglesias, A., Yates, D. N., McCluskey, A., and Hillel, D. 2004. Water Resources for Agriculture in a Changing Climate: International Case Studies. Global Environ. Change 14: 345-60.

[107] Reilly, J., Tubiello, F., McCarl, B., Abler, D., Darwin, R., Fuglie, K., Hollinger, S., Izaurralde, C., Jagtap, S., Jones, J., Mearns, L., Ojima, D., Paul, E., Paustian, K., Riha, S., Rosenberg, N., and Rosenzweig, C. 2003. US Agriculture and Climate Change: New Results. Climatic Change 57: 43-69.

[108] Fischer, G., Shah, M., Velthuizen, H., and Nachtergael, F. O. 2001. Global Agro-Ecological Assessment for Agriculture in the 21st Century. Vienna, Austria: International Institute for Applies Systems Analysis, IIASA Publications.

[109] Tubiello, F. N., Jagtap, S., Rosenzweig, C., Goldberg, R., and Jones, J. W. 2002. Effects of Climate Change on US Crop Production from the National Assessment. Simulation Results Using Two Different GCM Scenarios. Part I: Wheat, Potato, Corn, and Citrus. Climate Res. 20 (3): 259-70.

[110] Smith, J. B., Klein, R. J. T., and Huq, S. 2003. Climate Change, Adaptive Capacity, and Development. London: Imperial College Press, 347.

[111] Smit, B., and Skinner, M. W. 2002. Adaptation Options in Agriculture to Climate Change: A Typology. Mitigation and Adaptation Strategies for Global Change 7: 85-114.

[112] Hunsche, M., Bringe, K., Schmitz-Eiberger, M., and Noga, G. 2006. Leaf Surface Characteristics of Apple Seedlings, Bean Seedlings and Kohlrabi Plants and Their Impact on the Retention and Rainfastness of Mancozeb. Pest Manag. Sci. 62: 839-47.

[113] Gautam, H. R., Bhardwaj, M. L., and Kumar, R. 2013. Climate Change and Its Impact on Plant Diseases. Curr. Sci. 105 (12): 1685-91.

[114] Boonekamp, P. M. 2012. Are Plant Diseases Too Much Ignored in the Climate Change Debate?” Eur. J. Plant Pathol. 133: 291-4.

[115] Pathak, H. 2010. Mitigating Greenhouse Gas and Nitrogen Loss with Improved Fertilizer Management in Rice: Quantification and Economic Assessment. Nutr Cycling Agroecosyst. 87: 443-54.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]