Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

School of Engineering, Westlake University, Hangzhou, China

ABSTRACT

It is well-known that philosophical conflicts exist among classical mechanics, quantum mechanics and relativistic mechanics. In order to use the framework of general system theory to unify these three mechanics subjects, a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world. The two-body problem is the simplest model in mechanics and in this paper, it is re-examined by   using our new general system theory. It is found that the current description of the classical full two-body  problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered. After considering these, it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem. By introducing the concepts of psychic force and psychic field, all the possible movement states in the two-body problem can be explained within the framework of classical mechanics. There is no need to change the meanings of many fundamental concepts, such as time, space, matter, mass, and energy  as done in quantum mechanics and relativity theory. This points out a new direction for the unification of  different theories.

KEYWORDS

two-body problem, new general system theory, gravitational field, psychic field, classical mechanics, quantum mechanics, relativity theory

Cite this paper

PAN Lingli & CUI Weicheng. (2021). Re-examination of the Two-Body Problem Using Our New General System Theory. Philosophy Study, December 2021, Vol. 11, No. 12, 891-913.

References

Adler, C. G. (1987). Does mass really depend on velocity, dad? American Journal of Physics, 55(8), 739-743. doi:10.1119/1.15314

Arnold, V. I., Kozlov, V. V., & Neishtadt, A. I. (2006). Mathematical aspects of classical and celestial mechanics (3rd ed.). New York: Springer.

Arnold, V. I. (1989). Mathematical methods of classical mechanics (2nd ed.). (K. Vogtmann and A. Weinstein, Trans.). New York: Springer.

Arun, K., Gudennavar, S. B., & Sivaram, C. (2017). Dark matter, dark energy, and alternate models: A review. Advances in Space Research, 60(1), 166-186. doi:10.1016/j.asr.2017.03.043

Bertalanffy, L. V. (1968). General system theory: Foundations, development, applications. New York: George Braziller.

Bertalanffy, L. V. (1972). The history and status of general systems theory. The Academy of Management Journal, 15(4), 407-426. doi:10.2307/255139

Bohr, N. (1934). Atomic theory and the description of nature. Cambridge: Cambridge University Press.

Bunge, M. (2000). Energy: Between physics and metaphysics. Science & Education, 9(5), 457-461. doi:10.1023/A:1008784424048

Capra, F. (1996). The web of life: A new scientific understanding of living systems. Garden City, N.Y: Anchor Books.

Cardeña, E. (2018). The experimental evidence for parapsychological phenomena: A review. American Psychologist, 73(5), 663-677. doi:10.1037/amp0000236

Chen, D., & Stroup, W. (1993). General system theory: Toward a conceptual framework for science and technology education for all. Journal of Science Education and Technology, 2(3), 447-459. doi:10.1007/BF00694427

Cui, W. C. (2021a). On an axiomatic foundation for a theory of everything. Philosophy Study, 11(4), 241-267. doi:10.17265/2159-5313/2021.04.001

Cui, W. C. (2021b). On the philosophical ontology for a general system theory. Philosophy Study, 11(6), 443-458. doi:10.17265/2159-5313/2021.06.002

Cui, W. C., & Blockley, D. I. (1990). Interval probability theory for evidential support. International Journal of Intelligent Systems, 5(2), 183-192. doi:10.1002/int.4550050204

Cui, W. C., & Kang, L. L. (2020). On the construction of a theory of everything based on Buddhist cosmological model. Trends in Technical & Scientific Research, 3(5), 99-110. doi:10.19080/TTSR.2020.03.555624

De Aquino, F. (2012). Theory of everything. Retrieved from https://hal.archives-ouvertes.fr/hal-01079246

Duff, M. J. (1996). M-theory (the theory formerly known as strings). International Journal of Modern Physics A, 11(32), 5623-5641. doi:10.1142/S0217751X96002583

Dyson, F. (2006). The scientist as rebel. New York Review Books.

Einstein, A. (1905). On a heuristic point of view concerning the production and transformation of light. Annalen der Physik, 17, 132-148. (original in German)

Einstein, A. (1916). The foundation of the general theory of relativity. Annalen der Physik, 49(7), 769-822.

Feferman, S. (2006). The nature and significance of Gödel’s incompleteness theorems. Institute for Advanced Study. Retrieved from https://math.stanford.edu/~feferman/papers/Godel-IAS.pdf

Fetter, A. L., & Walecka, J. D. (2003). Theoretical mechanics of particles and continua. United States: Dover Publications.

Feynman, R. P. (1964). The Feynman lectures on physics (Vol. 1). United States: Addison Wesley.

Feynman, R. P., Leighton, R. B., & Sands, M. (2006). The Feynman lectures on physics. Retrieved from https://www.feynmanlectures.caltech.edu/

Gaiseanu, F. (2020). Informational structure of the living systems: From philosophy to informational modeling. Philosophy Study, 10(12), 795-806. doi:10.17265/2159-5313/2020.12.004

Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd ed.). United Kingdom: Pearson.

Haisch, B., & Rueda, A. (1997). The zero-point field and the NASA challenge to create the space drive. Journal of Scientific Exploration, 11(4), 473-485.

Haisch, B., Rueda, A., & Puthoff, H. (1994). Inertia as a zero-point-field Lorentz force. Physical Review A, 49(2), 678-694. doi:10.1103/PhysRevA.49.678

Hasegawa, H., Robnik, M., & Wunner, G. (1989). Classical and quantal chaos in the diamagnetic Kepler problem. Progress of Theoretical Physics Supplement, 98, 198-286. doi:10.1143/PTPS.98.198

Hawking, S. (2002). The theory of everything: The origin and fate of the universe. Beverley Hills, CA: New Millennium Press.

Hecht, E. (2009). Einstein on mass and energy. American Journal of Physics, 77(9), 799-806. doi:10.1119/1.3160671

Heisenberg, W. (1927). The physical content of quantum kinematics and mechanics. In J. A. Wheeler and W. H. Zurek (Eds.), Quantum theory and measurement (pp. 62-84). Princeton: Princeton University Press. (Originally Published: Z. Phys., 1927, 43(3-4), 172-198).

Heisenberg, W. (1930). The physical principles of the quantum theory. (C. Eckart and F. C. Hoyt, Trans.). Mineola, New York: Dover Publications, University of Chicago.

Herron, J. D. (1977). Rutherford and the nuclear atom. Journal of Chemical Education, 54(8), 499. doi:10.1021/ed054p499.1

Hou, X., & Xin, X. (2018). A note on the full two-body problem and related restricted full three-body problem. Astrodynamics, 2(1), 39-52. doi:10.1007/s42064-017-0010-9

Jaki, S. L. (1966). The relevance of physics. Chicago: University of Chicago Press.

Kant, I. (2002). Metaphysical foundations of natural science. In H. Allison and P. Heath (Eds.), Theoretical philosophy after 1781 (pp. 171-270, M. Friedman, Trans.). Cambridge: Cambridge University Press.

Kurzban, R., Burton-Chellew, M. N., & West, S. A. (2015). The evolution of altruism in humans. Annual Review of Psychology, 66(1), 575-599. doi:10.1146/annurev-psych-010814-015355

Lee, S. (2019). Complex space-time and complex quantum mind—An unified platform to explain the large, medium, and small scaled mysteries of universe and consciousness. Philosophy Study, 9(5), 246-252. doi:10.17265/2159-5313/2019.05.003

Luo, S. (2020). The Sturm-Liouville problem of two-body system. Journal of Physics Communications, 4(6), 061001. doi:10.1088/2399-6528/ab9c30

Mao, L. (2019). Science’s dilemma—A review on science with applications. Progress in Physics, 15(2), 78-85.

Maudlin, T. (1995). Three measurement problems. Topoi, 14(1), 7-15. doi:10.1007/BF00763473

Meholic, G. (2002). Another approach to the cause of inertia. The 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 7-10, Indianapolis, Indiana.

Moreira-Almeida, A., & Santos, F. S. (Eds.). (2012). Exploring frontiers of the mind-brain relationship. New York: Springer.

Newton, I. (1846). Newton’s Principia: The mathematical principles of natural philosophy (A. Motte, Trans.). New York: Daniel Adee. (Originally published in 1687)

Okun, L. B. (1989a). The concept of mass (mass, energy, relativity). Soviet Physics Uspekhi, 32(7), 629-638.

Okun, L. B. (1989b). The concept of mass. Physics Today, 42(6), 31-36. doi:10.1063/1.881171

Olszewski, S. (2016). The Bohr model of the hydrogen atom revisited. Reviews in Theoretical Science, 4(4), 336-352. doi:10.1166/rits.2016.1066

Ombre, L. (2015). Psychic powers: The essential guide for cultivating your intuition and developing psychic powers (Kindle ed.). Retrieved from https://www.amazon.com/Psychic-Powers-Essential-Cultivating-Developing-ebook/dp/B015C8TR9O

Oriols, X., & Mompart, J. (2019). Applied Bohmian mechanics: From nanoscale systems to cosmology (2nd ed.). Singapore: Jenny Stanford Publishing Pte. Ltd.

Planck, M. (1901). On the law of distribution of energy in the normal spectrum. Annalen der Physik, 4(3), 553-563. (Original in German)

Planck, M. (1914). The theory of heat radiation (M. Masius, Trans.). Philadelphia: P. Blakiston’s Son & Co. Retrieved from https://www.gutenberg.org/files/40030/40030-pdf.pdf

Prince, G. E., & Eliezer, C. J. (1981). On the Lie symmetries of the classical Kepler problem. Journal of Physics A, 14, 587-596. doi:10.1088/0305-4470/14/3/009

Robertson, D. S. (2000). Goedel’s theorem, the theory of everything, and the future of science and mathematics. Complexity, 5(5), 22-27.

Rueda, A., & Haisch, B. (1998). Inertia as reaction of the vacuum to accelerated motion. Physics Letters A, 240(3), 115-126. doi:10.1016/S0375-9601(98)00153-4

Rutherford, E. (1911). The scattering of α and β particles by matter and the structure of the atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 125(21), 669-688. doi:10.1080/14786440508637080

Sarfati, J. D. (1998). If God created the universe, then who created God? Creation ex nihilo Technical Journal, 12(1), 20-22.

Schaf, J. (2014). The fundamental assumptions of the theory of relativity shown false, yet many predictions match observations. This work shows why. Journal of Modern Physics, 5(16), 1617-1639. doi:10.4236/jmp.2014.516163

Scheeres, D. J. (2012). Orbital motion in strongly perturbed environments: Applications to asteroid, comet and planetary satellite orbiters. London, UK: Springer-Praxis.

Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. In C. Freksa, M. Jantzen, and R. Valk (Eds.), Foundations of computer science: Potential-theory-cognition (pp. 201-208). New York, USA: Springer. doi:10.1007/BFb0052088

Shen, Z. (2013). A new version of unified field theory—Stochastic quantum space theory on particle physics and cosmology. Journal of Modern Physics, 4(10), 1213-1380. doi:10.4236/jmp.2013.410165

Whitaker, A. (2006). Einstein, Bohr and the quantum dilemma: From quantum theory to quantum information (2nd ed.). UK: Cambridge University Press. doi:10.1017/CBO9780511805714

Weinberg, S. (2011). Dreams of a final theory: The scientist’s search for the ultimate laws of nature. New York: Knopf Doubleday Publishing Group.

Woodward, J. F., & Mahood, T. (1999). What is the cause of inertia? Foundations of Physics, 29(6), 899-930. doi:10.1023/A:1018821328482

Wong, C. L., & Yap, K. C. (2005). Conceptual development of Einstein’s mass-energy relationship. New Horizons in Education, 11(51), 56-66.

Zwiebach, B. (2004). A first course in string theory. Cambridge: Cambridge University Press.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]