Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Federal University of Ouro Preto (UFOP)-University Campus, s/n, Morro do Cruzeiro, Ouro Preto-MG, 35400-000, Brazil
2. Federal Institute of Minas Gerais (IFMG)-Congonhas Campus, Av. Michael Pereira de Souza, 3007-Campinho, Congonhas-MG, 36415-000, Brazil

ABSTRACT

Brazil has a great climatic diversity, with different demands for the adequate thermal performance of buildings, where the variables that impact it have different influences depending on the location and the type of wrapping used. When a prior study of the thermal performance of a building is not done in the design phase, the unpleasant effects for the user appear after the building is ready, and bring with them problems such as internal temperatures that are too high in the summer or too low in the winter. Therefore, the objective of this study is to provide recommendations for the application of ACM (aluminum composite material) composite panels and thermoacoustic (sandwich) tiles for external enclosure in the single-family residential sector. A high standard two-story residence with approximately 162 m2 per floor is used as a model and through computer simulations, utilizing the Energyplus program and observing the requirements of the NBR 15.575 performance standard, the thermal performance is evaluated. The factorial experiment was applied encompassing thermal performance variables such as absorptance, natural ventilation and thermophysical properties of the “wrapping for three different climatic conditions: extreme winter climate, average climate and extreme summer climate. The results obtained show that the thermoacoustic roof tile keeps the internal temperature more stable independent of external oscillations, while the ACM panels follow the external oscillations, not meeting the expectations of thermal performance and needing passive treatments.

KEYWORDS

Metallic (wrapping), thermal performance, composite panels, thermoacoustic tiles.

Cite this paper

References

[1]       Souza, F. M. F. de. 2010. Fachadas Ventiladas em Edifícios Tipificação de Soluções e Interpretação do Funcionamento Conjunto Suporte/Acabamento. Mestrado Dissertação, Faculdade de Engenharia da Universidade do Porto.

[2]       Ibanez-Puy, M., et al. 2017. Opaque Ventilated Façades: Thermal and Energy Performance Review. Renewable and Sustainable Energy Reviews 79 (Nov.): 180-91.

[3]       Dias, A. 2011. Avaliação do desempenho térmico de coberturas metálicas utilizadas em edificações estruturadas em aço.Mestrado dissertação, Universidade Federal de Ouro Preto, p. 110.

[4]       Pimenta, A. I., Oliveira, B., Campos, J., and Pereira Neto, M. J. 2015. Conceito de conforto térmico humano. Relatório-Faculdade de Engenharia, Universidade do Porto, Porto.

[5]       Ferreira, C. 2016. “Análise de sensibilidade por meio de experimento fatorial de parâmetros de desempenho térmico de envoltórias de edificações residenciais: contribuição à revisão das normas brasileiras.” Doutorado Tese, Universidade Federal de Ouro Preto, p. 434.

[6]       Associação Brasileira de normas técnicas. 2013. NBR 15.575: Edifícios HabitacionaisDesempenho. Rio de Janeiro, p. 381.

[7]       Associação Brasileira de Normas Técnicas. 2005. NBR 15.220: Desempenho térmico de edificações. Rio de Janeiro, p. 92.

[8]       DOE-U.S. Department of Energy.Input Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. Accessed abril 2020. https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.1.0/InputOutputRef erence.pdf.

[9]       Kim, D.-W., and Park, C.-S. 2011.Difficulties and Limitations in Performance Simulation of a Double Skin Façade with EnergyPlus.Energy and Buildings 43 (12): 3635-45.

[10]    Silva, P. M. A. 2010. Aplicação do programa EnergyPlus como ferramenta do projecto de comportamento térmico de edifícios de habitação. Mestrado Dissertação, Universidade do Porto.

[11]    Nico-Rodrigues, E. A., Alvarez, C. E. De, Santo, A. D., and Piderit, M. B. 2015. “Quando a janela define a condição de desempenho térmico em ambientes ventilados naturalmente: caso específico das edificações multifamiliares em Vitória, ES.” Ambiente Construído 15 (2): 7-23. http://dx.doi.org/10.1590/s1678-862120150002 00011.

[12]    Song, X., and Ye, C. 2017. Climate Change Adaptation Pathways for Residential Buildings in Southern China.” Energy Procedia 105: 3062-7.

[13]    CPTEC (Centro de Previsão de Tempo e Estudos Climáticos). 2009. Banco de dados climatológicos. Accessed Nov. 10, 2009. http://www.cptec.inpe.br/.

[14]    Instituto Nacional de Meteorologia. 2012. Banco de dados meteorológicos para ensino e pesquisa. Accessed Set. 12, 2012. www.inmet.gov.br/portal/index.php?r=bd mep/bdmep.

[15]    De Dear, R. J., and Brager, G. S. 2002. “Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55. Energy and Buildings 34 (6): 549-61.

[16]    American Society for Heating, Refrigerating and Air Conditioning Engineering. 2017. ANSY/ASHRAE 55: Thermal Environmental Conditions for Human Occupancy. Atlanta.

[17]    Turner, J. R., and Thayer, J. F. 2001. Introduction to Analysis of Variance: Design, Analysis & Interpretation. Thousand Oaks, CA: Sage Publications.

[18]    Scott, A. J., and Knott, M. 1974. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 30 (3): 507-12.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]