![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
An Arabic Transformation Based Approach to Automatic Paraphrasing of Syntactic Sentences
Ali Boulaalam, Azeddine Rhazi
Full-Text PDF
XML 731 Views
DOI:10.17265/1539-8072/2021.06.001
Moulay Ismail University, Meknes, Morocco; Qadi Ayyad University, Marrakesh, Morocco
The aim of this paper is to exploit the existing Lexicon-Grammar (LG) tables, as well as to assess their relative importance vis-à-vis the concept of transformation and automatic paraphrasing. These operations include multiple processes at the lexical, morpho-syntactic, and semantic levels. Our proposal is to model highly productive phenomena of the Arabic language, such as pronominalization and passivization, dedicated to the both Arabic verb classes and Multiword Expressions (MWEs), in order to formalize the relation between structures and their semantic properties and thus to represent the symmetry and pairs between sentences that share a predicate that links the noun and a support verb. Furthermore, the automatic process of paraphrasing involves both the distributional and transformative features of each class of verbs or other structures such as Arabic MWEs. This research in progress outlines how to build Lexicon-Grammar tables for Arabic syntactic sentences by using automatic paraphrasing in a large transformational grammar on the one hand, and to implement it into both NooJ electronic dictionaries and local grammars on the other hand.
Lexicon-Grammar, transformation, automatic paraphrasing, Arabic, nominalization, passivization, NooJ
Boujelben, I., & Benhamadou A. (2012). Transformational analysis of Arabic sentences: Application to automatically extracted biomedical symptoms. In C. Vuckovic et al., Automatic processing of various levels of linguistic phenomena from the NooJ International Conference (pp. 182-194). CSP, UK.
Chomesky, N. (1957). Syntactic structures. Paris: Mouton & Co-S-Gravenhage.
Elhannach, M. (1988). Syntaxe des verbes psychologique de l’Arabe (Thèse de doctorat d’état (LADL), Université de Paris 7, 1988).
Gavriilidou, Z., Papadoppoulou, E., & Chadjipapa, E. (2012). Processing Greek frozen expressions with NooJ. In C. Vuckovic et al., The NooJ 2011 International Conference (pp. 63-74). CSP, UK.
Gross, M. (1975). Méthodes en syntaxe: Régime des constructions complétives. Hermann, Paris: Actualités Scientifiques et Industrielles.
Gross, M. (1981). Les bases empiriques de la notion de prédicat sémantique. Langages, 15(63), 7-52.
Harris, Z. S. (1968). Mathematical structures of language. New York: Wiley.
Laporte, E. (26 Février 2020). Is the Lexicon-Grammar exploitable for language processing? Retrieved from http:hal.archives-ouvertes.fr/hal-00858302
Mesfar, S. (2008). Analyse morpho-syntaxique automatique et reconnaissance des entités nommées en arabe standard (Ph.D. thesis, Franche-Comte University, 2008).
Mota, C., Baptista, J., & Barreioro, A. (2018). The Lexicon-Grammar of predicate nouns with ser de in Port4NooJ. In Formalizing natural languages with NooJ 2018, and its natural languages processing applications. Communications in computer and information science, Vol. 987 (pp. 124-137). New York: Springer.
Rhazi, A., & Boulaalam, A. (2018). Corpus based extraction and translation of Arabic MWEs. In NooJ proceedings 2017 (pp. 143-155). New York: Springer.
Sagot, B., & Tolone, E. (2009). Intégrer les tables du lexique-grammaire à un analyseur syntaxique robuste à grande échelle. In Actes de la Conference TALN 2009 (pp. 1-11). Senlis, France.
Silberztein, M. (2003). The NooJ manual. Retrieved from http://www.nooj4nlp.net/pages/references.html
Silberztein, M. (2016). Formalizing natural languages: The NooJ approach. London: Wiley-ISTE.
Silberztein, M. (2018). Unary transformations for French transitive sentences. In Formalizing natural languages with NooJ 2018, and its natural languages processing applications. Communications in computer and information science, Vol. 987 (pp. 138-151). New York: Springer.