Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

This article reviews the literature on thermochemical processing of municipal solid waste as the final disposal in Brazil, explores recent publications in the field of solid waste generated, its origin, characteristics and removal mechanisms currently employed, in the same way , available technologies for the thermochemical treatment of MSW with an emphasis on gasification and clean technology are evaluated, highlighting the current technical and reported in the literature in order to identify indicators of efficiency and flexibility of the technology. From the review it is concluded that gasification is a technically feasible option for the thermochemical conversion of municipal solid waste and subsequent power generation, besides being a technology that meets the applicable emission limits. Some of the main advantages of gasification of municipal solid waste are: (a) the sharp reduction in the waste mass (about 70-80%) and volume (approximately 80-90%); (b) the drastic reduction in land use, 1:3000; (c) destruction of organic pollutants and other halogenated hydrocarbons; (d) concentration and immobilisation of inorganic contaminants so that they can be used effectively and safely removed; (e) use recyclables, such as ferrous metals, ferrous ash and slag materials; (f) reducing emissions of greenhouse gases by anaerobic decomposition of organic waste and (g) power generation.


KEYWORDS

MSW, waste to energy, gasification, thermo-chemical conversion, environmental advantage.

Cite this paper

References

[1] Ediçoes, C. 2012. Ed., Política Nacional de Resíduos SólidoS, 2nd ed. Brasilia.

[2] Codignole, F. 2013. “Project and Technical-Economic Evaluation of Gasification Plants for Urban Waste for Distributed Generation of Electricity.” Federal University of Itajubá.

[3] Salomão, A. 2010. “World Bank Examines Garbage in Brazil.” Exame.com, [Online]. Available: http://exame.abril.com.br/blogs/aqui-no-brasil/2010/10/04/banco-mundial-faz-estudo-sobre-o-lixo-no-brasil/. [Accessed: 15-May-2013].

[4] “Energia Obtida A Partir do Lixo.” Fontes de energia, 2013. [Online]. Available: http://fontes-energeticas.blogspot.com.br/p/lixo.html. [Accessed: 15-May-2013].

[5] Feam, Dped, and Gemuc, Aproveitamento Energético de Resíduos Sólidos Urbanos: Guia. Belo Horizonte, 2012.

[6] Shonhiwa, C. 2013. An Assessment of Biomass Residue Sustainably Available for Thermochemical Conversion to Energy in Zimbabwe, vol. 52. Elsevier Ltd.

[7] Cointreau, S. 2006. “Occupational and Envireomental Health Issues of Solid Waste Management.” Urban Pap. 57.

[8] Yamada, S., Shimizu, M., and Miyoshi, F. 2004. “Thermoselect Waste Gasification and Reforming Process.” JFE Tech. Rep. 3 (3): 21-6.

[9] Woolcock, P. J., and Brown, R. C. 2013. “A Review of Cleaning Technologies for Biomass-derived Syngas.” Biomass and Bioenergy 52: 54-84.

[10] Stantec. 2011. “Waste to Energy a Technical Review of Municipal.” Bumaby, BC.

[11] Abrelpe and Plastivida. 2013. “Caderno Informativo: Recuperacçao Energética.” São Paulo.

[12] Abrelpe, Panorama dos resíduos sóldos no Brasil, 2011. São Paulo: abrelpe.

[13] Abrelpe. 2013 “Atlas Brasileiro de Emissões de GEE e Potencial Energético na Destinaçao de Resíduos Sólidos,” São Paulo.

[14] Abrelpe. 2008 “Panorama Dos Residuos sólidos no Brasil.”.

[15] Basu, P. 2013. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory.

[16] Lopez, J. B. P. 2010. “Evaluación de Los Impactos Ambientales Generados por la Gasificación y la Incineración como Tratamientos de Gestión de Residuos Sólidos para la Ciudad de México.” Instituto tecnológico y de Estudios Superiores de Monterrey.

[17] Giraldo, R. S. Y. 2013. “Avaliação de um Sistema de Limpeza integrado a um Conjunto Gaseificador de Biomassa/Célula SOFC.” Universidade Federal de Itajubá.

[18] Arena, U. 2012. “Process and Technological Aspects of Municipal Solid Waste Gasification. A Review.” Waste Manag 32 (4): 625-39.

[19] Kothari, R., Tyagi, V., and Pathak, A. 2010. “Waste-to-energy: A Way from Renewable Energy Sources to Sustainable Development.” Renew. Sustain. Energy 14 (9): 3164-70.

[20] Arena, U. 2012. “Department of Environmental Sciences—Second University of Naples of Wastes WtE processes.”

[21] Bridgwater, V., Toft, J., and Brammer, J. G. 2002. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion, vol. 6, no. 3.

[22] Basu, P. 2010. Biomass Gasification and Pyrolysis. Burlington, MA: Elsevier Inc..

[23] Galeno, G., Minutillo, M., and Perna, A. 2011. “From Waste to Electricity Through IPGFC (Integrated Plasma Gasification/Fuel Cell) System,” Int. J. Hydrogen Energy 36 (2): 1692-701.

[24] Epe-Empresa, D. 2008. “Aproveitamento Energético Dos resíDuos sóLidos Urbanos de Campo Grande, MS.” Rio Janeiro EPE.

[25] Rebitanim, N. Z., Karim, G. W. A., Rebitanim, N. A., and Amran, M. S. M. 2013. “Potential Applications of Wastes from Energy Generation Particularly Biochar in Malaysia.” Renew. Sustain. Energy Rev. 21: 694-702.

[26] “Waste Treatment: Fluidized Bed Gasification and Melting Furnace—Kobelco Eco-Solutions Co., Ltd.” [Online]. Available: http://www.kobelco-eco.co.jp/english/product/haikibutushori/ryudo_q3.html. [Accessed: 03-Jun-2013].

[27] “Mitsui Recycling, Pyrolysisgasification & Melting Process.” [Online]. Available: http://www.ieabcc.nl/workshops/Tokyo_Joint_Meeting/02_Mitsui.pdf. [Accessed: 03-Jun-2013].

[28] “News Releases | 2013 - MITSUI & CO., LTD.” [Online]. Available: http://www.mitsui.com/jp/en/release/2013/index.html. [Accessed: 03-Jun-2013].

[29] Strobino, F., Prato, A., Ventura, D., and Damonte, M. 2012. “Energy Recovery From Msw Treatment by Gasification and Melting Technology.” ecos2012.org, 1-15.

[30] “JFE Steel Corporation - Products and Services.” [Online]. Available: http://www.jfe-steel.co.jp/en/products/index.html. [Accessed: 03-Jun-2013].

[31] “Energy-from-Waste Plants Products Hitachi Zosen Corporation.” [Online]. Available: http://www.hitachizosen.co.jp/english/products/products001.html. [Accessed: 03-Jun-2013].

[32] Tanigaki, N., Manako, K., and Osada, M. 2012. “Co-gasification of Municipal Solid Waste and Material Recovery in a Large-scale Gasification and Melting System.” Waste Manag. 32 (4): 667-75.

[33] “A Review of State-of-the-art for WtE Technologies in Relation to the Study just Completed for the DEPARTMENT of Environment & Conservation, Government of Western Australia.” [Online]. Available: http://www.wasteauthority.wa.gov.au/media/files/documents/WtE_presentation_Dec_2012.pdf. [Accessed: 03-Jun-2013].

[34] Schilli, J. W. 2004. “Using Gasification to Process Municipal Solid Waste.” HDR Innov.12 (4).

[35] “The Plasco Advantage.” [Online]. Available: http://www.plascoenergygroup.com/our-solution/the-plasco-advantage/. [Accessed: 03-Jun-2013].

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]