![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Muhammad Yousaf, Asif Mahmood, Yunsong Wang, Yijun Chen, Zhimin Ma and Ray P. S. Han
Full-Text PDF
XML 1444 Views
DOI:10.17265/2328-2223/2016.02.003
With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and fuel cells. Among these electrode materials, L-TMD (layered transition metal dichalcogenide) nanosheets (especially, S (sulfur) and Se (selenium) based dichalcogenides) have received a lot of attention due to their intriguing layered structure for enhanced electrochemical properties. L-TMD composites have recently been investigated not only as a main charge storage specie but also, as a substrate to hold the active specie. This review highlights the recent advancements in L-TMD composites with 0D (0-dimensional), 1D, 2D, 3D and various forms of carbon structures and their potential applications in LIB (lithium ion battery) and SIB (sodium ion battery).
L-TMD based composites, energy storage devices, nanocompsites, LIBs and SIBs.