![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
How Does the Mind Handle Uncertainty in Ambiguous Figures?
Manuel Moreno-Sanchez, J. Antonio Aznar-Casanova, Nelson Torro-Alves
Full-Text PDF
XML 3173 Views
DOI:10.17265/2159-5542/2016.01.001
University of Barcelona, Barcelona, Spain Institute for Brain, Cognition & Behavior (IR3C), University of Barcelona, Barcelona, Spain Federal University of Paraíba, Paraíba, Brazil
How does the mind select one interpretation from a bistable stimulus and how this eventually becomes conscious? We briefly presented 17 rotations of an ambiguous figure to observers and asked them to give a quick response. We were interested in determining how observer factors, stimulus properties and context influence the selected response. Data analysis revealed that observers assigned probabilistically each figure rotation to a category according to an implicit criterion of typicality or prototype. From discriminant analyses we ascertain how the standardized coefficients change as do the testing conditions, mainly when stimulus information is lacking or confusing. Results suggest that the proximity to the prototype expresses the uncertainty of the subject’s response and may be gradually manipulated by the orientation of the figure. Depending on the uncertainty value, discriminant strength of the observer and contextual factors have greater influence on responses than the physical properties of the ambiguous stimulus.
bistable visual perception, ambiguous figures, uncertainty and information, categorization, visual awareness
Manuel Moreno-Sanchez, J. Antonio Aznar-Casanova, & Nelson Torro-Alves. (2016). How Does the Mind Handle Uncertainty in Ambiguous Figures?. Psychology Research, 6(1), 1-13.
Attneave, F. (1971). Multistability in perception. Scientific American, 225(6), 62-71. http://doi.org/10.1038/scientificamerican1271-62
Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52(1), 203-210. http://doi.org/10.2466/pms.1981.52.1.203
Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237–260.1.
Britz, J., Landis, T., & Michel, C. M. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cerebral Cortex, 19(1), 55-65. http://doi.org/10.1093/cercor/bhn056
Brugger, P. (1999). One hundred years of an ambiguous figure: Happy birthday, duck/rabbit. Perceptual and Motor Skills, 89(3 Pt 1), 973-977. http://doi.org/10.2466/pms.1999.89.3.973
Brugger, P., & Brugger, S. (1993). The Easter bunny in October: Is it disguised as a duck? Perceptual and Motor Skills, 76(2), 577-578. http://doi.org/10.2466/pms.1993.76.2.577
Bruner, J. S., & Leigh, A. (1955). Perceptual identification and perceptual organization. Journal of General Psychology, 53, 21-28. http://doi.org/10.1080/00221309.1955.9710133
Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton Century.
Bugelski, B. R., & Alampay, D. A. (1961). The role of frequency in developing perceptual sets. Canadian Journal of Psychology, 15, 205-211.
De Graaf, T. A., de Jong, M. C., Goebel, R., van Ee, R., & Sack, A. T. (2011). On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cerebral Cortex, 21(10), 2322-2331. http://doi.org/10.1093/cercor/bhr015
De Valois, K. K. (1977). Spatial frequency adaptation can enhance contrast sensitivity. Vision Research, 17(9), 1057-1065.
Ellis, S. R., & Stark, L. (1978). Eye movements during the viewing of Necker cubes. Perception, 7(5), 575-581.
Flügel, J. C. (1913). The influence of attention in illusions of reversible perspective. British Journal of Psychology, 1904-1920, 5(4), 357-397. http://doi.org/10.1111/j.2044-8295.1913.tb00070.x
Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. Eye movements and psychological functions: International views, 145-168.
García-Pérez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Perception & Psychophysics, 46(4), 397-400. http://doi.org/10.3758/BF03204995
Goolkasian, P. (1987). Ambiguous figures: Role of context and critical features. The Journal of General Psychology, 114(3), 217-228.
Goolkasian, P., & Woodberry, C. (2010). Priming effects with ambiguous figures. Attention, Perception, & Psychophysics, 72(1), 168-178. http://doi.org/10.3758/APP.72.1.168
Gregory, R. L. (1970). The intelligent eye. New York: McGraw-Hill.
Hochberg, J. E. (1950). Figure-ground reversal as a function of visual satiation. Journal of Experimental Psychology, 40(5), 682.
Jastrow, J. (1899). The mind’s eye. Popular Science Monthly, 299-312.
Kanai, R., Carmel, D., Bahrami, B., & Rees, G. (2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 21(3), R106-R107. http://doi.org/10.1016/j.cub.2010.12.009
Knapen, T., Brascamp, J., Pearson, J., Ee, R. van, & Blake, R. (2011). The role of frontal and parietal brain areas in bistable perception. The Journal of Neuroscience, 31(28), 10293-10301. http://doi.org/10.1523/JNEUROSCI.1727-11.2011
Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41(1), 1-8. http://doi.org/10.1046/j.1469-8986.2003.00126.x
Kornmeier, J., & Bach, M. (2012). Ambiguous figures—What happens in the brain when perception changes but not the stimulus. Frontiers in Human Neuroscience, 6, 51. http://doi.org/10.3389/fnhum.2012.00051
Leeper, R. (1935). A study of a neglected portion of the field of learning—The development of sensory organization. The Pedagogical Seminary and Journal of Genetic Psychology, 46(1), 41-75. http://doi.org/10.1080/08856559.1935.10533144
Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3(7), 254-264.
Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130(5), 748-768. http://doi.org/10.1037/0033-2909.130.5.748
Long, G. M., Toppino, T. C., & Mondin, G. W. (1992). Prime time: Fatigue and set effects in the perception of reversible figures. Perception & Psychophysics, 52(6), 609-616. http://doi.org/10.3758/BF03211697
Maffei, L., Fiorentini, A., & Bisti, S. (1973). Neural correlate of perceptual adaptation to gratings. Science (New York, N.Y.), 182(4116), 1036-1038.
Mathes, B., Strüber, D., Stadler, M. A., & Basar-Eroglu, C. (2006). Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neuroscience Letters, 402(1-2), 145-149. http://doi.org/10.1016/j.neulet.2006.03.063
Parasuraman, R. (1986). Vigilance, monitoring, and search. In K. R. Boff, L. Kaufman, & J. P. Thomas (Orgs.), Handbook of perception and human performance, Vol. 2: Cognitive processes and performance (pp. 1-39). Oxford, England: John Wiley & Sons.
Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3-25.
Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87(1), 33-59.
Rock, I., & Mitchener, K. (1992). Further evidence of failure of reversal of ambiguous figures by uninformed subjects. Perception, 21(1), 39-45.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science (New York, N.Y.), 171(3972), 701-703.
Toppino, T. C. (2003). Reversible-figure perception: Mechanisms of intentional control. Perception & Psychophysics, 65(8), 1285-1295.
Toppino, T. C., & Long, G. M. (2005). Top-down and bottom-up processes in the perception of reversible figures: Toward a hybrid model. In N. Ohta, C. M. MacLeod, & B. Uttl (Orgs.), Dynamic Cognitive Processes (pp. 37-58). Springer Tokyo.
Tsal, Y. (1994). Effects of attention on perception of features and figural organisation. Perception, 23(4), 441-452.
Windmann, S., Wehrmann, M., Calabrese, P., & Güntürkün, O. (2006). Role of the prefrontal cortex in attentional control over bistable vision. Journal of Cognitive Neuroscience, 18(3), 456-471. http://doi.org/10.1162/089892906775990570
Zeki, S. (2004). The neurology of ambiguity. Consciousness and Cognition, 13(1), 173-196. http://doi.org/10.1016/j.concog.2003.10.003