Contact us
![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
Useful Links
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Article
Author(s)
Norazila Othman and Masahiro Kanazaki
Full-Text PDF
XML 518 Views
DOI:10.17265/2159-5275/2014.07.006
Affiliation(s)
ABSTRACT
The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation method that is used to predict unknown functions based on the sampling data obtained by the design of experiments. This model can also be used to predict aerodynamic coefficients/derivatives using several measured points. The objective of this paper is to develop an efficient digital flight simulation by solving the equation of motion to predict the aerodynamics data using a surrogate model. Accordingly, there is a need to construct and investigate aerodynamic databases and compare the accuracy of the surrogate model with the exact solution, and hence solve the equation of motion for the flight simulation analysis. In this study, sample datas for models are acquired from the USAF Stability and Control DATCOM, and a database is constructed for two input variables (the angle of attack and Mach number), along with two derivatives of the X-force axis and three derivatives for the Z-force axis and pitching moment. Furthermore, a comparison of the value predicted by the Kriging model and the exact solution shows that its flight analysis prediction ability makes it possible to use the surrogate model in future analyses.
KEYWORDS
Surrogate model, Kriging method, equation of motion, standard dynamics model
Cite this paper
References