Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Department of Chemistry, North Eastern Hill University, Shillong 793022, India

ABSTRACT

The quantum chemical PMR (Proton magnetic resonance) chemical shift calculation, inherently, has the information on the induced field values not only within the molecular system, but also in the neighborhood of the molecule, to the extent, which is significant. Within the molecule the locations of the protons are specified by the way of the complete description of coordinate of all the atoms in the molecule. If the information about the induced fields in the neighborhood is to be known, then it is necessary to place protons at appropriate locations in the neighborhood irrespective of whether the proton is part of the molecule and or bonded to any other atom of the molecule. Such a stand-alone proton in the neighborhood is specified by the coordinates with reference to the molecular axes system, which would sense this induced field and in the result would be reported as proton chemical shift. Such induced field contributions are usually calculated using a classical dipole model for reasons that the protons are not part of the molecule and is at extraneous locations when the molecular magnetic susceptibilities can be used conveniently for calculating induced fields and thus chemical shifts. Such a QM (Quantum mechanical) calculation of chemical shifts and comparison with values from classical equations is being reported.

KEYWORDS

Aromatic ring current, induced fields, chemical shifts, inter molecular, classical dipole model, comparison QM (Quantum mechanical) and classical calculation.

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]