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Abstract: This paper presents the dynamic motion response by rotor unbalance malfunctions and the restraints available to oppose 

these applied forces and corrective techniques that can be used to reduce the effects of mass unbalance. The mass unbalance is the most 

common and frequent anomaly in rotating machines, and therefore, although there are many computer programs that solve many cases, 

we believe it is important to remember his theory here. About this subject should techniques for correcting unbalance problems 

described in this document be applied. And, more importantly, a tape is made without disassembling the machine, if the transducers 

described in this work are installed. 
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1. Introduction 

Many rotating machines have very serious breakdowns, 

due to their failure to perform adequate predictive 

maintenance that impair the success of their operation 

and cause negative performance, not so much because 

of their energy efficiency, but because of their 

feasibility and technical-economic performance results. 

A strong imbalance, which is not corrected, ends up 

producing other problems such as the curvatures of the 

shaft, misalignments, rubs and cracks. 

Rotor motion is an orbit, in most cases elliptical, with 

X and Y amplitude semi-axes and ω rotation speed, as 

indicated by Fig. 1 [1], and can be measured as 

displacements, according to the API’s (American 

Petroleum Institute’s) Standard 670 recommendation, 

using proximity or induction transducers in horizontal 

and vertical positions. 

The measurements of the X and Y transducers are 

seen as sine waves and, and using the third axis of an 

oscilloscope, it allows visualizing the orbit as well as 

the phase angle of the maximum response (high spot) 

for the reference mark transducer (Kp). The 

measurement of the phase angle, on a polar diagram of 

the orbit is measured according to Fig. 2 [2], between 
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the phase reference transducer and the direction of 

maximum response (high spot). 

The equation to use in a simple equilibrium is: 

Fu = m*re*ω
2 (1) 

caused because the center of gravity of the rotor does 

not coincide with the geometric axis of the rotation, 

where: m is the rotor mass, re is the distance from the 

geometry axis to the center of gravity, and ω is rotation 

speed, according to Fig. 3. 

This CF (centrifugal force) has to be compensated by 

creating another (Fc), equally counter-direction, adding 

a mass Wc at a distance rc [3]: 

𝐶𝐹 =  
𝑊𝑐
𝑔
𝑟𝑐𝜔

2 (2) 

From both Eqs. (1) and (2), we obtain: 

𝑊𝑐 =
𝑚𝑟𝑐
𝑟𝑒

 

Suppose that, the eccentricity re, at low revolutions, 

is equal to half of the amplitude reading of a 

displacement transducer, since this measures amplitude 

peak to peak, so that: 

𝑊𝑐 = 
𝑚 ∗

𝐴𝑚𝑝𝑝𝑘−𝑝𝑘

2

𝑟𝑐
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Fig. 1  Orbit of the centre of the shaft. 
 

 
Fig. 2  Phase angle of orbit. 
 

 
Fig. 3  Rotor model. 
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2. Method: Balancing Correction through 

Stiffness, Balancing “in Situ” 

The first balance resonance is controlled primarily 

by the net spring constant of the rotor system, so that 

the spring of the rotor can be calculated and the mass 

unbalance force can also be calculated in this area. The 

frequency resonance is [4]: 

𝜔𝑟𝑒𝑠(
𝑟𝑎𝑑

𝑠⁄ ) = √
𝐾 

𝑀
 

where, K = spring rate (N/m) and M = rotor mass (kg). 

The dynamic motion is indicated by: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑡𝑖𝑜𝑛 =
𝐹𝑜𝑟𝑐𝑒

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠
 

Consequently, in this area of first resonance, the 

motion is restrained by the spring of the rotor system, 

and the centrifugal force due to the mass unbalance, can 

be used to calculate the required corrective weight 

addition, whose expression was given by Eq. (2). 

A rotor balanced at a certain low speed is not 

necessarily balanced at its operating speed, since it will 

be necessary to take into account different thermal 

expansions, curvatures of the shaft, modifications of its 

center of gravity, etc. when the rotor is operating at its 

nominal speed. Hence, there is the importance of 

balancing “in situ” in addition to the difficulty of often 

having to disassemble the machine and take it to the 

workshop, as it happens, for example, to a hydraulic 

turbine of a power plant (Fig. 4). For this reason, in 

many cases it is convenient to balance the rotors on 

their own bearings and working conditions. 

In this method all parameters are considered vectors, 

with their amplitude and their angular position or phase 

angle. 
 

 
Fig. 4  Hydraulic turbine. 
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2.1 For the Example of Hydraulic Turbine 

Rotor operating speed: ω = 2,200 rpm = 230.38 rad/s 

Fist balance resonance: 1,600 rpm = 167.55 rad/s 

Rotor mass = 650 kg 

The procedure, for a plane located on the turbine 

impeller, consists of the following stages: 

(1) The rotor is run at its rated speed to measure the 

amplitude and phase angle of the unbalance response 

1X, vector R1, as shown in Fig. 5, with an amplitude 

peak to peak of 3.5 mils (1 mil = 25.4 μm) and phase 

angle of 170°, measured counter clockwise: 

Radius of correction: rc = 1,300 mm (turbine 

impeller radius) 

Proximity transducer reading dynamic motion = 3,5 

mils peak to peak = 88.90 μm 

Phase angle = 170° 

𝐾 = 𝜔𝑟𝑒𝑠
2 ∗ 𝑀 = 230.382 *650/9.81 = 3,531,969.76 

N/m 

Dynamic motion =  
88.90

106
 m

=
force

3531969.76 N/m
 ⇒ Force

= 313.99 N 

From Eq. (2), the weight correction is: 

𝑊𝑐 =
𝐶𝐹 ∗ 𝑔

𝑟𝑐𝜔
2
= 

313.99 N ∗ 9.81

(1300 1000⁄ ) 𝑚 ∗ 167.552rad/s

= 0.0843 kg = 84.30 g 

This weight will be added to the rotor system with a 

phase angle 180° opposite the indicated or measured 

phase angle. For the previous example, the weight 

would add at an angle of 170° + 180° = 350°, and if the 

corrective weight is subtracted, it must subtract at phase 

angle of 170°. 

However, it would be very easy to think that the 

vibration response was due only to the unbalanced 

mass, so it is best to take this result as a guideline of the 

determined mass to install. It is not assumed that the 

mechanical system has a linear response to mass 

unbalance. 

The presence of significant shaft preloads, thermal 

effects, fluidic forces, bearing instability and various 

other mechanisms will cause a non-linear response. So, 

a certain weight of 85 g shall be added, in principle, in 

the opposite direction to the R1 obtained but in an 

arbitrary angular position and close, in any case to the 

opposite direction of that response R1, at 30°, to 

measure their joint response and calculate what is due 

only to the determined added weight. 
 

 
Fig. 5  Original measurement. 
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Table 1  Resulting vector  

 Polar Rectangular 

R1 + R2 = 4.5125° ⇒ -4.34 – j 1.16 mils pp 

-R1 3.5170° ⇒ -0.39 - j 3.48 mils pp 

R3 = 5.27 64.65° ⇐ -4.73 + j 2.32 mils pp 

 

Consequently, we will place a certain weight 

approximate to the previous solution, 80 g, in the 

opposite quadrant in a somewhat arbitrary direction, 

300°, for example. The response is then obtained 

𝑅1  +  𝑅2,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 4.5mils125°, measured counterclockwise, 

corresponding to the signal that is produced now that 

added weight. 

Subtracting now this last answer from the previous 

original 𝑅1⃗⃗⃗⃗  (Table 1), we obtain the unique answer 

corresponding to the added weight, vector 𝑅3⃗⃗ ⃗⃗ =

5.27⦟ 64.5°, counterclockwise . This situation is 

observed in Fig. 6. 

To balance the rotor, we must find a vector operator 

⋀⃗⃗  that when multiplied by the vibration vector 

produced by the determined added weight R3 you get a 

vector equal to -R1, that is [5]: 

⋀⃗⃗ ∗ 𝑅3⃗⃗ ⃗⃗  =  −𝑅1⃗⃗⃗⃗  

and to produce this change in the vector 𝑅3⃗⃗ ⃗⃗ , the same 

change in the initial test weight must be made by 

applying the same vector operator ⋀⃗⃗ , so that the 

correction weight that will produce a vibration vector 

equal to −𝑅1⃗⃗⃗⃗ , will be obtained: 

𝑊𝑐⃗⃗⃗⃗  ⃗  =  ⋀⃗⃗ ∗ 𝑊𝑝⃗⃗ ⃗⃗  ⃗ 

As the linear system has assumed, with respect to the 

mass disequilibrium response, any change in the added 

weight vector will give the same change in its vibration 

response vector. being then: 

⋀⃗⃗ =  
𝑅3⃗⃗ ⃗⃗ 

−𝑅1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 =  

5.27⦟ 64.65°

3.5 ⦟ 350°
= 1.50 ⦟ 285.35 

𝑊𝑐⃗⃗⃗⃗  ⃗  =  1.50⦟285.35° ∗ 85 g ⦟ 30°

= 127.5 g ⦟315.35° 

A correction weight of 125 g must then be placed at 

315.5° and at a distance of 1,300 mm from the centre of 

the impeller. 

 
Fig. 6  Polar diagram. 
 

 
Fig. 7  Correction weight turns. 
 

Next, we must make the vibration response vector R3 

to the added given weight Wp rotate 74.5° clockwise, 

to match the address of the original response vector -R1, 

to counteract the original vibration of the turbine. 

Consequently, the determined test weight Wp, must 

also be rotated, at the same angle as R3 to coincide with 

-R1, another 74.5° clockwise, at Wc according to Fig. 7. 
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This Wc correction weight is placed on the turbine 

impeller in the above-mentioned position and the 

turbine is started again to verify the balance and check 

the need for new corrections, for which the previous 

steps indicated would have to be repeated. 

3. Multiplane Balancing Techniques 

Another approach to deriving a balance solution to a 

particular balance can be found in a discrete vector 

solution to the problem, being its method similar to the 

case of a plane, but considering, of course, the coupling 

and interconnection between planes. This technique is 

most useful on multiple casing machine trains or when 

the specific response and cross coupled effects of the 

rotor are unknown. 

The study is carried out in a laboratory rotor, such as 

the one in Fig. 8, in which two balancing planes V1 and 

V2 are studied. Most rotor systems contain multiple 

mass elements supported between two bearings and a 

secondary effect of two plane balancing is the associated 

with cross coupling. That is, a balance correction at one 

of the rotor systems will be recognized through cross 

coupling at the other end of the rotor. Typically, this 

cross coupled action is 180° opposite across the rotor and 

characteristic cross coupled force vector ratios are 4 to 1. 

The discreet vector solution is: 

𝑉0⃗⃗  ⃗ =  𝑅⃗  𝑈⃗⃗  (3) 

where: 𝑉0⃗⃗  ⃗ is the original measured vibration vector at 

balancing speed, amplitude (μm or mils) and angular 

location, no added determined weight. 

U is the unbalance force vector (g. and angular 

location). 

R is the machine response at unbalance (mils/g) and 

specific angle. 

There are an equation and two unknowns: 

𝑅⃗  𝑎𝑛𝑑 𝑈⃗⃗ . To solve them, we add a known calibration 

weight (𝑊𝑝⃗⃗ ⃗⃗  ⃗) at angle θ to the rotor and measure a new 

vector at operating speed, so we can provide a second 

equation: 

𝑉1⃗⃗  ⃗ (new measured vector at operating speed)

=  𝑅⃗  (𝑈⃗⃗ + 𝑊𝑝⃗⃗ ⃗⃗  ⃗) 

𝑉1⃗⃗  ⃗ =  𝑅⃗  𝑈⃗⃗ + 𝑅⃗  𝑊𝑝⃗⃗ ⃗⃗  ⃗  =  𝑉0⃗⃗  ⃗ + 𝑅⃗  𝑊𝑝⃗⃗ ⃗⃗  ⃗  and 𝑅⃗ =

 
𝑉1⃗⃗⃗⃗ − 𝑉0⃗⃗⃗⃗ 

𝑊𝑝⃗⃗⃗⃗ ⃗⃗ 
 

That provides a solution for the response 𝑅⃗  into Eq. 

(3) and solves the unbalance force vector: 

𝑈⃗⃗ =  
𝑉0⃗⃗  ⃗

𝑅⃗ 
 

Taking into account that the balancing must be 

carried out in two planes, at least, by the different 

masses that are generally in a rotor, and by the effect of 

cross coupling that must be between one plane and 

another, applying this same tecnichue to a two plane 

balance (V1 and V2 in Fig. 9), we will have [6]: 

𝑉01⃗⃗⃗⃗⃗⃗ =  𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗ +  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗   

𝑉02⃗⃗⃗⃗⃗⃗ =  𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗ +  𝑅22⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗   
(4) 

where: 

𝑉01⃗⃗⃗⃗⃗⃗ = original vector at balance plane 1, no added 

weight. 

𝑉02⃗⃗⃗⃗⃗⃗  = original vector at balance plane 2, no added 

weight. 

𝑅11⃗⃗ ⃗⃗ ⃗⃗   = response vector of rotor at plane 1 to 

unbalance at plane 1. 

𝑅12⃗⃗ ⃗⃗ ⃗⃗   = response vector of rotor at plane 1 to 

unbalance at plane 2. 

𝑅21⃗⃗ ⃗⃗ ⃗⃗   = response vector of rotor at plane 2 to 

unbalance at plane 1. 

𝑅22⃗⃗ ⃗⃗ ⃗⃗   = response vector of rotor at plane 2 to 

unbalance at plane 2. 

𝑈1⃗⃗⃗⃗  = unbalance vector at plane 1. 

𝑈2⃗⃗ ⃗⃗   = unbalance vector at plane 2. 

If a calibration weight 𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ is added to plane 1, we 

will have: 

𝑉11⃗⃗ ⃗⃗  ⃗ =  𝑅11⃗⃗ ⃗⃗ ⃗⃗   (𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑈1⃗⃗⃗⃗ )  +  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗   

𝑉12⃗⃗ ⃗⃗  ⃗ =  𝑅21⃗⃗ ⃗⃗ ⃗⃗   (𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑈1⃗⃗⃗⃗ )  +  𝑅22⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗   
(5) 

and on the other hand, also: 

𝑉11⃗⃗ ⃗⃗  ⃗ =  𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗  +  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗  ⏟            
𝑉01⃗⃗ ⃗⃗ ⃗⃗  

= 𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑉01⃗⃗⃗⃗⃗⃗  

𝑉12⃗⃗ ⃗⃗  ⃗ =  𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗  + 𝑅22⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗  ⏟            
𝑉12⃗⃗ ⃗⃗ ⃗⃗  

= 𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑉12⃗⃗ ⃗⃗  ⃗ 
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being: 

𝑉11⃗⃗ ⃗⃗  ⃗  = vibration vector at balance plane 1 with 

calibration weight at plane 1. 

𝑉12⃗⃗ ⃗⃗  ⃗  = vibration vector at balance plane 2 with 

calibration weight at plane 1. 

Substituing these equations at the original response 

Eq. (4), we will have the cross-effects: 

𝑅11⃗⃗ ⃗⃗ ⃗⃗  =  
𝑉11⃗⃗ ⃗⃗ ⃗⃗  − 𝑉01⃗⃗ ⃗⃗ ⃗⃗  

𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 and 𝑅21⃗⃗ ⃗⃗ ⃗⃗  =  

𝑉12⃗⃗ ⃗⃗ ⃗⃗  − 𝑉02⃗⃗ ⃗⃗ ⃗⃗  

𝑊𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 (6) 

From Eq. (4) it is obtained: 

𝑈1⃗⃗⃗⃗ =  
 𝑅22⃗⃗ ⃗⃗ ⃗⃗   𝑉01⃗⃗⃗⃗⃗⃗ −  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑉02⃗⃗⃗⃗⃗⃗ 

𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑅22⃗⃗ ⃗⃗ ⃗⃗  −  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑅21⃗⃗ ⃗⃗ ⃗⃗  
 

𝑈2⃗⃗ ⃗⃗  =  
 𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑉02⃗⃗⃗⃗⃗⃗ −  𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑉01⃗⃗⃗⃗⃗⃗ 

𝑅22⃗⃗ ⃗⃗ ⃗⃗   𝑅11⃗⃗ ⃗⃗ ⃗⃗  −  𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑅12⃗⃗ ⃗⃗ ⃗⃗  
 

(7) 

 

 

 
Fig. 8  Laboratory rotor. 
 

 
Fig. 9  Results. 
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Similarly, with a calibration weight 𝑊𝑝2⃗⃗ ⃗⃗ ⃗⃗  ⃗ now in 

plane 2, we calculate cross-coupling effects: 

𝑉21⃗⃗⃗⃗⃗⃗ =  𝑅12⃗⃗ ⃗⃗ ⃗⃗   (𝑊𝑝2⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑈2⃗⃗ ⃗⃗  )  + 𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗  

𝑉22⃗⃗⃗⃗⃗⃗ =  𝑅22⃗⃗ ⃗⃗ ⃗⃗   (𝑊𝑝2⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑈2⃗⃗ ⃗⃗  )  + 𝑅21⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗  

being: 

𝑉21⃗⃗⃗⃗⃗⃗  = vibration vector at balance plane 1 with 

calibration weight at plane 2. 

𝑉22⃗⃗⃗⃗⃗⃗  = vibration vector at balance plane 2 with 

calibration weight at plane 2. 

And, similary: 

𝑅𝟐𝟐⃗⃗ ⃗⃗ ⃗⃗  =  
𝑽𝟐𝟐⃗⃗ ⃗⃗ ⃗⃗  ⃗− 𝑽𝟎𝟐⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑾𝒑𝟐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 and 𝑅𝟐𝟏⃗⃗ ⃗⃗ ⃗⃗  =  

𝑽𝟐𝟏⃗⃗ ⃗⃗ ⃗⃗  ⃗− 𝑽𝟎𝟏⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑾𝒑𝟐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

This technique can be used for more than two planes. 

There will be n equations of the form: 

𝑉01⃗⃗⃗⃗⃗⃗ =  𝑅11⃗⃗ ⃗⃗ ⃗⃗   𝑈1⃗⃗⃗⃗  +  𝑅12⃗⃗ ⃗⃗ ⃗⃗   𝑈2⃗⃗ ⃗⃗  +  𝑅13⃗⃗ ⃗⃗ ⃗⃗   𝑈3⃗⃗ ⃗⃗  

+ ⋯… .+ 𝑅1𝑛⃗⃗ ⃗⃗ ⃗⃗   𝑈𝑛⃗⃗ ⃗⃗   

𝑉0𝑛⃗⃗ ⃗⃗ ⃗⃗  =  𝑅𝑛1⃗⃗ ⃗⃗ ⃗⃗   𝑈𝑛⃗⃗ ⃗⃗   +  𝑅𝑛2⃗⃗ ⃗⃗ ⃗⃗   𝑈𝑛⃗⃗ ⃗⃗  +  𝑅𝑛3⃗⃗ ⃗⃗ ⃗⃗   𝑈3⃗⃗ ⃗⃗  

+ ⋯… .+ 𝑅𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑈𝑛⃗⃗ ⃗⃗   

This multiplane problem is best treated with a 

computer aided matrix solution [7]. 

3.1 Example: Laboratory Rotor Kit 

Rotor mass = 0.550 kg 

Rotor operating speed: ω = 4,000 rpm = 418.88 rad/s 

Fist balance resonance: 1,800 rpm = 188.50 rad/s 

Unbalance radius = 120 mm 

Steps to follow: 

(1) Vibration response (Fig. 9): Original response 

vector to correct, no weights added: 

𝑉01⃗⃗⃗⃗⃗⃗ = 3.88⦟32°; 𝑉02⃗⃗⃗⃗⃗⃗ = 3.81⦟228° 

(2) A certain weight is added in plane 1 and the 

response vector is measured in planes V1 and V2. 

Calibrations weight = 1g⦟22° and radius 0.12 μm. 

With vibration response (Fig. 9), the result is 

obtained: 

𝑉11⃗⃗ ⃗⃗  ⃗ = 1.97⦟39°; 𝑉21⃗⃗⃗⃗⃗⃗ = 3.03⦟240° 

(3) Other certain weight is added in plane 2 and the 

response vector is measured in planes V1 and V2, 

vibration response (Fig. 9): 

Calibrations weight = 1g⦟225° and radius 0.12 μm 

𝑉12⃗⃗ ⃗⃗  ⃗ = 3.27⦟27°; 𝑉22⃗⃗⃗⃗⃗⃗ = 1.66⦟231° 

(4) The cross-effects of vibration between one plane 

and another are now calculated, according to Eq. (6). 

Continued subsitutions will permit solution of all the 

direct and cross-response coefficients: 

R11 = 3.24⦟183°; R12 = 1.13⦟10°; R21 = 1.74⦟350°; 

R22 = 3.58⦟180°. 

(5) The mass disequilibrium vector is then calculated, 

from Eq. (5): 

𝑈1⃗⃗⃗⃗ 

=  
 3.58⦟180° ∗ 3.88⦟32° −  1.13⦟10° ∗  3.81⦟314°

 3.24⦟183° ∗  3.58⦟180° −  1.13⦟10° ∗ 1.74⦟350°

=
18.18⦟33° 

9.64⦟3.63°
= 0.215 g ⦟17.28° 

The mass to be added in plane 1 will be the one that 

has been obtained, but in the opposite direction, that is, 

rotated 180°. 

Plane 1: 𝑈1⃗⃗⃗⃗ + 180° = = 1.88 𝑔 ⦟ 29.37° +

180° = 1.88 g⦟209.37° 

Similarly it will be done for plane 2. [8] 

4. Conclusions 

Two simple rotor cases have been analysed, a single 

plane and two planes, but the overall response of the 

rotating system to synchronous forcing functions 

includes observation of the specific bending modes or 

analysis of shaft modes. 

However, after examining the total modal response 

of the rotor system, if the rotor operates in a second 

vibration mode, it may be that the weight placement 

location to correct the first bending mode, as was done 

in the example, implies that a weight placed at the plane 

1 to correct the first bending mode will cause the second 

bending mode response to be considerably worse. 

In the example on two-plane balancing, it was 

concluded that major weight correction must be applied 

at the plane 2. This weight correction also benefits the 

response at the plane 1 of the rotor system; so much less 

weight need be selected for the plane 1. The lighter 

weight is modally beneficial because it will not 

adversely affect the first bending mode response at the 

plane 2 of the rotor. 
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