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Abstract: Non-absorbed macromolecular binders as sequestrants for phosphate ions offer an effective approach to treat 
hyperphosphatemia in ESRD (end-stage renal disease) patients. RenaGel® has been an example with remarkable success of a polymer 
synthesized to prevent the absorption of dietary phosphate for ESRD patients. Electrostatic interaction is the primary driving force for 
complexation of phosphate-based anions with these amino groups in the polymer backbone. Chitosan is a deacetylation product of 
chitin, which is the structural element in the exoskeleton of crustaceans and cell walls of fungi. The amino groups in the backbone give 
the phosphate binding ability to chitosan. This article has demonstrated that chitosan exhibited a phosphate binding effect indeed. Thus, 
it has potential applications in environmental management and wastewater treatment, as well as treatment of hyperphosphatemia 
patients. 
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1. Introduction 

Recently, polymer pharmacy served as an 
inter-discipline subject involved with material science, 
polymer science, pharmacy, clinical medicine, 
analytical science and nanotechnology. It has seen 
significant growth since 1970s when the “polymer 
prodrug” concept was proposed by Ringsdorf [1]. In 
the initial stage, the applications of polymer pharmacy 
were limited to a few biological products such as 
interferon [2-4], heparin [5, 6] and serum albumin [7, 
8]. With the development of pharmaceutics and 
nanotechnology, numerous novel kinds of polymers 
were synthesized or modified to meet the growing 
demands for pharmaceutical excipients. For examples, 
some polysaccharides especially modified celluloses 
were developed as sustained-release carriers in solid 
preparations aiming to achieve a smooth and 
long-acting release behavior [9, 10]; Eudragit®, the 
brand name for a kind of commercially available 
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polymethacrylate-based biomaterials, has been widely 
used in preparing enteric preparations [11]; PLA (poly 
(lactic acid)) and PLGA (poly (lactic-co-glycolic acid)) 
approved by FDA (Food and Drug Administration) in 
1980s have been used extensively for preparing 
sustained-release injectable microspheres or 
nanoparticles [12, 13]; some novel biopolymers were 
employed to achieve targeting preparations in 
nanoscale aiming to meet the “EPR effect” in tumor 
tissues [14, 15]. Nowadays, the synthesized polymers 
are not merely used as excipients or framework 
material, but act as active pharmaceutical ingredients: 
RenaGel® (sevelamer hydrochloride), a hydrogel of 
cross-linked poly (allylamine hydrochloride), has been 
developed for the treatment of hyperphosphatemia [16, 
17]. 

Hyperphosphatemia, an electrolyte disturbance in 
which there is an abnormal content increase of 
phosphate in the blood, is much common in patients 
with ESRD (end-stage renal disease) [18-20]. 
Generally, serum phosphorus levels in healthy adults 
can maintain a balance between intestine, bone, 
intracellular space and kidneys, and keep an average 
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phosphorus level between 0.81 mmol/L and 1.45 
mmol/L. But due to a serious renal insufficiency, the 
ESRD patients usually possess an abnormal mineral 
metabolism especially for serum phosphorus. A 
long-term abnormally elevated level of phosphate can 
produce secondary hyperparathyroidism, metabolism 
disorder of Vitamin D, renal osteopathy, 
cardiovascular complications and even an increased 
risk of death [21, 22]. The total dialytic phosphorus 
removal is only 800-1000 mg⁄session or about 300 
mg⁄day, suggesting an insufficient effect for patients 
with hyperphosphatemia [23]. So the treatment for 
patients with hyperphosphatemia has focused on using 
oral phosphate binders taken at mealtimes. 
Traditionally, calcium or aluminum-based agents were 
initially used as phosphate binders to reduce serum 
phosphate levels rely on the actions of ionic bonds. But 
the abnormally elevated level of aluminum caused by a 
long-term administration can result in increased 
neurological, hematologic and skeletal toxicity [24-27]; 
otherwise, the hypercalcemia may lead to serious 
cardiovascular diseases and soft-tissue calcification 
[28-30]. Later on, Fosrenol® (lanthanum carbonate) 
was developed to replace calcium-based preparations 
[31, 32]. But the side-effect of the increased lanthanum 

in blood is still not clear. Moreover, sometimes, 
medicinal charcoal tablets were also used as phosphate 
binders with low cost. But the lack of specificity 
limited its application in treatment of 
hyperphosphatemia [33, 34].  

RenaGel®, the first metal-free phosphate binder, is a 
hydrogel of cross-linked poly (allylamine 
hydrochloride) which is completely nonabsorbed and 
nondegradable from gastrointestinal tract. Since being 
approved in North America for a dozen years, 
RenaGel® has been an example with remarkable 
success of a polymer synthesized to prevent the 
absorption of dietary phosphate for ESRD patients. The 
binding capacity is based on the ionic hydrogen bond 
between phosphate anions and amines spaced on the 
polymer backbone (Fig. 1) [35]. But the key 
contraindications for sevelamer administration are a 
history of intestinal obstruction, followed by 
swallowing disorders [36]. So it is meaningful to 
search an amino-contained macromolecular binder 
with better biocompatibility. Chitosan, a linear 
polysaccharide composed of randomly distributed 
β-(1-4)-linked D-glucosamine and 
N-acetyl-D-glucosamine, may be a desirable candidate 
(Fig. 2). 

 

 
Fig. 1  a) Chemical structure of sevelamer; b) Binding interactions between polymeric amine gels and phosphate [35]. 
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Fig. 2  Chemical structure of chitosan. 
 

Table 1  Reagent Composition. 

Contents Initial Concentration of 
Solutions 

R1a. Blacnnk Reagent 
Sulphuric acid 

 
0.36 mol/L 

Sodium chloride 154 mmol/L 
Detergent 
R1b. Molybdate Reagent 
Ammonium molybdate 
Sulphuric acid 
Sodium chloride 

N/A 
 
3.5 mmol/L 
0.36 mmol/L 
154 mmol/L 

2. Experimental Section  

2.1 Materials 

Chitosan was purchased from Shanghai Makclin 
Biochemical Co., Ltd. RenaGel® (sevelamer 
hydrochloride tablets) were obtained from 
Sanofi-Aventis group. 

2.2 Phosphate Binding Capability Studies 

The in vitro phosphate binding studies were 
performed in 200 mL of KH2PO4/NaOH buffer 
solution (1.6 mmol/L for phosphate, pH = 6.8) 
thermostatically maintained at 37 ± 0.5 oC based on 
Chinese Pharmacopoeia (2015 Ed.) Method III. Paddle 
rotational speed was set to 100 rpm. The phosphate 
concentrations were chosen to be equal to plasma 
phosphate level in a healthy human which is 1.6 
mmol/L. The sample containing 200 mg active 
ingredient was added to the dissolution cup. 5mL 
samples were withdrawn at predetermined time 
intervals in order to understand the rate of ion binding 
onto -NH2 in vitro. The sample solutions were 
centrifuged and analyzed using an automatic 
biochemistry analyzer (ARCHITECT C8000). 

 

2.3 Analytical Methods  

An automatic biochemistry analyzer (ARCHITECT 
C8000) was employed to determine the phosphate 
levels of the liquid samples. Inorganic phosphprous 
detection kits (RANDOX®) were used in this study; in 
addition, details of the reagent composition were 
shown in Table 1. The phosphate concentration of 
standard solution was 1.65 mmol/L. Before test, the 
sample solution and standard solution were diluted 
with 100 times (v/v) amount of working reagent. The 
working reagent was prepared by mixing R1a and R1b 
in a feed ratio of 7:3 (v/v). The absorbance was 
determined at a wavelength of 340 nm. The phosphate 
concentration of liquid sample was calculated 
according to the Lambert-Beer theory. 

3. Results and Discussion  

Generally, the phosphate binding behaviors mainly 
take place in intestines in vivo. So the in vitro 
phosphate binding studies were measured by 
immersing the ground chitosan power into a 
KH2PO4/NaOH buffer solution (1.6 mmol/L for 
phosphate, pH = 6.8) of which the pH value is close to 
that of artificial intestinal juice. A dissolution tester 
equipped with six paddles was employed to simulate 
the gastrointestinal motilities. The BA (binding amount) 
of chitosan to phosphate was calculated according to 
the equation below: 

BA = (C0-Ct) VM (phosphate)/W 
where MP is the molecular weight of the phosphate ion, 
V is the volume of KH2PO4/NaOH buffer solution and 
W is the weight of sample. When Ct became a constant, 
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