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Abstract: We need to predict the probability of unprecedented flooding of lands and coastlines due to unexpected storms, 
overflowing rivers, hurricanes, tidal surges and dam failures. This paper addresses new record floods that exceed all prior “historic” 
levels and are invariably due to extreme or severe weather and/or unexpected precipitation, defeating barriers and causing extensive 
power system outages. Given their inherently low occurrence, the probabilities of new (rare) record floods are treated as random 
outcomes and independent events using classical statistical mechanics and related hypergeometric sampling. This analysis 
straightforwardly replaces tuning or fitting to “normal” precipitation, regular tides and prior flood data and the traditional use of 
multi-parameter extreme value distributions (EVDs) used for weather-induced flood forecasting and estimating “return periods”. The 
approach is not reliant on geographic computer models, meteorological forecasting, published “flood zone” charts, or hydrological 
techniques and images. We illustrate the universal applicability of this Bayesian-style approach of solely addressing new records for 
a wide range of specific flooding case studies for rivers, major hurricanes, quasi-periodic coastal tides, and dam failures. The 
quantitative link is shown between extreme event extent and power outage duration, and the results impact disaster resilience, 
infrastructure vulnerability and emergency preparedness measures. 

 
Key words: Floods, planning, rare events, risk, rivers, dams, probability. 
 

1. Introduction: New Record Flood Risk  

1.1 The Predictive Need and the Present Approach 

We need to predict the probability of unprecedented 

flooding of lands and coastlines due to unexpected 

storms, overflowing rivers, hurricanes, tidal surges 

and dam failures. Known as “extraordinary floods” [1] 

by its very definition, a new “record” flood exceeds 

all prior floods in height and extent, and is an 

“unknown known” and usually results in extended 

power outages. As suggested by P. C. Oddo (private 

communication, 2020) this could mean “that our 

current conception of the future could be 

fundamentally different from the present or the past”. 

Since extreme flood events will occur, the only 

question is risk quantification defined as the inevitable 

probability of a new record flood. 

The present approach of rare-event risk assessment 

for the probability of flooding is based on the 

established statistical mechanics of physical systems. 
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A wide range of specific example case studies include 

flooding from New Zealand and US rivers, recent 

major US hurricanes (Harvey, Irma and Florence), 

high tides in Netherlands, the repetitive tides in the 

Venice Lagoon, and the occurrence of dam failures. 

The quantitative link is shown between flooding 

extent and power outage duration, and a new 

correlation developed for the probability of extended 

non-restoration and its duration. 

Our primary interest is in predicting the unexpected 

new record and the subsequent restoration of power 

system infrastructure due to the occurrence of record 

floods, to help defining barriers, defenses or controls 

which focus on disaster resilience and emergency 

preparedness [2, 3]. As pioneered in the Netherlands 

[4], we consider flood probability as a measure of the 

predictive uncertainty, because of the direct impact on 

disaster resilience, infrastructure vulnerability and 

emergency preparedness measures for extreme 

flooding events [5, 6]. Given that all non-record 

floods are implicitly societally acceptable, for any 

location the desired final statement sought is of the 

form: “There is a one in X chance that the next flood 
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will exceed existing barrier heights, prevention 

capacity and/or record water levels within the 

foreseeable future”. So determining the value for X is 

the recurring question. 

Despite clear economic justification, the present 

work is not based on any economic decision making 

such as cost-benefit trade-off [7], societal risk cost 

inter-comparisons [8], or funding allocation based on 

land loss [9, 10]. There have been extensive (and 

expensive) studies of the financial risk and economic 

factors for prioritizing river and coastal flood 

prevention measures, especially in the USA [6, 7, 10, 

11]. Enhanced flood prevention measures for just the 

massive Dutch [4], Venice [12], and New Orleans [13] 

projects have a cost many $B, and will still need 

future upgrading. 

Humans globally now occupy more floodable lands 

and coasts exposed to unprecedented events [e.g. 4, 6, 

14] while more dams are operating [15, 16]. There is 

concern that flood and storm magnitudes and 

frequency are perhaps increasing due to systematic 

climate change, and the excellent review [17], 

identified 3,173 events in 25 years but states: “we 

should not assume that this long-term record is the 

best predictor of the future”. This is ample 

justification for the present study and attempt. 

1.2 Previous Methods Used for Floods and 

Socio-economic Risk 

Forecasting weather and flooding is the  

traditional realm of the established hydrological   

and meteorological disciplines [1, 17-19; plus 

water.weather.gov and www.weather.gov]. Past and 

present river and coast water levels are coupled to 

weather forecasting using computer modeling and 

“ensemble” predictions [20] and elaborate statistical 

curve fitting for the probability of potential flow or 

height [21]. Being linked to weather forecasting, there 

are many excellent and key references on models used 

world-wide for the frequency and magnitudes of 

historical flooding due to past storms and stream 

flows (as a sample see Refs. [1, 19-28]). 

By definition, new records are “known unknowns” 

resulting from an unexpected hurricane, tsunami or 

downpour, and may include failure of existing 

engineered preventative measures (overloaded levees, 

pumps, sea walls, storm drainage, etc.). We cannot 

predict when record floods will occur, and it is clearly 

stated that: “As a rule of thumb, statistical methods 

should not be used to estimate recurrence intervals in 

years that are more than twice the number of years of 

available homogeneous data” [29]. 

The usual approach is to make the best statistical 

fits1 to the prior height or flow data, and all have 

essentially very similar coefficients of determination 

or “goodness of fit” parameters [19, 29, 30, 31]. The 

only justification for their use is they can be tuned to 

fit the data well even though the adjustable parameters 

can number three, four, or more, but are not physically 

distinguishable. The excellent US Geological Survey 

(USGS) study [21] covered the basic methods and 

carefully examined nine different fits, showing no 

unique “best fit” prediction to the tail (Ref. [21], Fig. 

9), and the uncertainties in making predictions beyond 

the data range, in this case above the prior record flow 

of about 70,000 cfs and below an exceedance 

probability of 0.01. 

The data fits are location and regionally different 

and specific, and require “regional skewness 

estimators” (see e.g. the excellent summaries in Refs. 

[22-24, 32]). Also Bonnin et al. [22] also importantly 

state: “The current practice of precipitation (and river 

height and flow) frequency analysis makes the implicit 

assumption that past is prologue for the future. 

Furthermore, if the climate changes in the future, there 

is no guarantee that the characteristics extracted are 

suitable for representing climate during the future 

lifecycle of projects being designed”. This issue was 

                                                           
1 The formulae are often termed Generalized Extreme Value 
Distributions (variously abbreviated as EVD, GED and GEVD), 
or specifically named, and have three or more adjustable 
parameters (see Section 3.2 and Table 1). 
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also pointed out as due to globally and locally 

changing climate and precipitation patterns [25]. 

For coastal regions worldwide, there are similar 

statistical approaches and concerns for predicting 

flood and storm surges (see Refs. [4, 13, 33-35]). 

Standard (Monte-Carlo type) statistical sampling has 

also been used for variations in the arbitrarily chosen 

fitting parameters, and flooding probabilities or 

frequencies are often extrapolated outside the data 

base by ascribing uncertainty bands or assumed 

“confidence” levels (see below). Coasts have 

quasi-periodic tidal fluctuations superimposed on 

potentially record high levels, and are different from 

inland floods due to “one-off” river overflows. To 

account for systematic sea level rise, the mean or 

average tidal sea level data have been adjusted using 

3rd order polynomials fitted by arbitrary, which again 

are highly location and data range specific (see Refs. 

[7, 11]). 

Hence, in summary, it is well known from all this 

extensive and detailed work that: 

(a) Sophisticated distributions fitted to prior data 

for frequency or number of floods, storm surges or 

precipitation events are physically arbitrary and 

multi-parameter, and therefore only strictly applicable 

within the existing data range and may not properly 

include the tail of random rare events. 

(b) The assumption that the future is just like the 

past historical (prior) data does not account for any 

systematic or recent shifts or significant changes in 

weather patterns, precipitation or climate, which have 

been and are actually observed whether attributed to 

climate change or not. 

(c) Extensive numerical flood depth data are 

generally not available for intervals longer than 50 to 

100 years, are often incomplete, and relevant 

hydro/paleo/geologic data are scarce. 

(d) Modern precipitation analyses, computer 

models and statistical methods are well developed and 

tuned to daily, weekly and multi-year weather 

forecasting, but not to the worst few one-off rare or 

extreme events (due to unexpected hurricanes, major 

storms, tidal surges, typhoons etc.) so do not predict 

unusual flooding events well. 

Since the real issue is fitting the few extreme points 

at the right tail of the distribution, past studies try to 

allow for the resulting greater uncertainty, sometimes 

referred to as “deep uncertainty”, but are inherently 

biased since they usually retain and the fits are 

weighted by the bulk of the non-record data forming 

the peak probability. 

In 2012, the UK reported the “wettest winter for 

250 years”, but despite this new record the flood 

zones are still defined by yearly occurrence2, and 

flood risk delineated by distinct but entirely arbitrary 

categories [36], viz: 

 “—high risk…each year, there is a 3.3% chance 

or greater; 

 medium…each year, there is between a 1% and 

3.3% chance; 

 low risk…each year, there is between a 0.1% and 

1% chance; 

 very low risk…each year, there is less than 0.1% 

chance”. 

This ranking implies the completely new record 

was a “low risk” at 0.4% per year (i.e. probability of 

0.004 for once in 250 years). We do not use such 

unsupported relative risk level, empirical 

classification, yearly “frequency” or rankings; and 

also reject defining acceptable risk boundaries on the 

basis of event frequency vs. consequences measured 

in deaths or money (see Refs. [13, 15, 29, 37]). Using 

quantitative frequency-versus-deaths (F-N curves) as 

the risk measure literally allows trades between deaths 

and frequency for obtaining the same risk, using what 

is called a “Societal Tolerable Risk Limit” boundary. 

For example, for existing dams a failure frequency of 

one in a million dam-years resulting in a cut-off limit 

of 1,000 deaths is the same tolerable “risk” as one 

                                                           
2 Equivalently, a 0.1% chance in a year is a frequency of 
10-3/year or the apocryphal one-in-a thousand years’ event. 
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death for a failure of one every thousand years. As 

justification, the USBR report [37] simply states: 

“(Bureau of) Reclamation defines this risk as 

Annualized Life Loss, and uses a guideline of 0.001 

fatalities per year to address this measure of risk”; 

while economic losses and impacts “may be important 

considerations in the decision-making process”. 

Working backwards, the “statistical value” or 

cost-of-a-life lost varies widely [38] being somewhere 

in the range of $1-10 M, so 0.001 implies only a 

completely negligible financial/societal risk exposure 

of $1-10,000 per death per year. Only if more than 

1,000 are killed is the lost value greater than $1 M 

which is still “tolerable”, but surely negligible 

compared to the likely $Bs of infrastructure damage 

and repair costs. 

Using geographic - hydrographic - socioeconomic 

computer modeling, about 40 M people and $3 T are 

estimated to be at future or potential risk to a 

“once-in-a-hundred year flood” in the US alone [26], 

comparable to the cost of a major viral pandemic. The 

past cost of US flooding risk has been estimated as 

$90 B and over 700 deaths during 2004-2014, and will 

likely become worse [6]. In England there are about  

5 million properties at risk of any type of flooding, 

with an annual insurance cost of more than $3 B,  

with 14% or 7,000 sites of the electrical infrastructure 

at risk [36]. The fiscal and societal risk is actually 

huge. 

1.3 Present Scope and Objective 

Pragmatically, we only seek the probability of 

exceeding the previous record flood in some 

(unknown or chosen) future and treat all record floods 

as random outcomes or events, subject to statistical 

and physical constraints. Support to the present 

approach is also in USGS Bulletin 17C p. 21: “In 

general, a time series of annual peak-flow estimates 

may be considered to be a random sample of 

independent, identically distributed random variables” 

[1]. We simply extend this concept to describe the 

occurrence of new record (extraordinary) floods that 

do not follow standard statistical distributions; or 

occur at any known variance, multiple standard 

deviations or moments from some average, median or 

central value. In addition, systematic changes in 

“normal” water levels and geology/geography can 

affect long-term predictions. 

We first briefly discuss existing predictive and 

flood risk analysis approaches and develop the new 

approach based on the established statistical 

mechanics of physical systems. We then provide test 

cases, and link to power outage extent and probability. 

2. Probability and Rate of Record Floods: 
Theory and Comparison of Predictions 

To attempt to inform this problem, we adopted 

simple sampling of observations based on standard 

assumptions, physical reasoning and traditional 

statistical mechanics theory for observing random 

outcomes. To illustrate the long-standing and 

well-known fitting and consequent predictive problem 

we compared three different approaches to quantify 

the “tail” uncertainty: (a) the usually plotted Extreme 

Value Distribution (EVD) and weighted Pearson Type 

III curves; with (b) the hypergeometric and statistical 

sampling estimates; and to (c) standard Excel Add 

Trendline or weighted TableCurve 2D mathematical 

fitting routines. 

2.1 Traditional Generalized EVDs 

Typically, arbitrary three or more parameters 

“Generalized Extreme Value Distributions” (GEVD) 

and Pearson type are used for floods [7, 19, 26, 30, 31] 

and also for power outages [39]. The only justification 

for their use is they can be tuned to fit the data well 

even though the adjustable parameters can number 

three, four, or more. Not physically distinguishable, 

the EVDs have been written with many different symbols 

for the various constants and the zero-offset, μ (for a 

range of examples, see Ref. [40]) and are exponential 

functions of similar general form.  
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Table 1  Typical EVD fitting parameters. 

Distribution Ψ α β ζ 

Gumbell 1 0 e-θ 1 

Frechet 1 (ξ-1)/ξ -1/ξ ξ 

Weibull 1 (1-ξ)/ξ -1/ξ ξ 

Pearson III, IV 1 ξ 1 Γ(ξ) 

Modified Gaussian e-θ/4ψ 1 1 1 
 

Typical popular variants are compared in Table 1, 

where α, β, ζ, ξ, Ψ and ψ are the adjustable fitting 

parameters, and setting ߠ ≡ ቀ߰ߤ−ܨܯ ቁ , so 	݌(ܯி) =
	అഀߠట఍  .	ഁߠି݁

These types plus some 3,000 other formulae 

(including high-order polynomials) are available using 

the commercial curve fitting software TableCurve 2D 

[41]. While Ockham’s Razor suggests using the 

simplest hypothesis or method, the reader is of course 

free to adopt whatever best suits the purpose and 

represents appropriately the physics, available data 

and logic of the situation. For the present rare or 

record event case, we seek the “best” fit to just the 

“tail” record events, not to the overall distribution as 

usual; and must avoid extrapolating EVD fits outside 

the basic data range, as extensively described and 

shown by Asquith et al. [21]. 

2.2 Hypergeometric Sampling 

Since the occurrence of any past or new record 

flood is purely random, we retain the original Laplace 

“equally possible” definition of probability being the 

ratio of numbers observed, n, to the total possible, N 

[42]. Each flood event is completely independent but 

part of some overall population, which may be subject 

to local, regional and global shifts in geography, 

geology, meteorology, oceanography and hydrology. 

Observed record, nF, or non-record, m, floods are 

random independent events, out of total (sample) 

populations of, N, and, M, respectively, and can occur 

or be observed at any (unpredictable) moment and 

represent our prior information or history. Therefore, 

the probability of observing the outcomes, p(nF), of, 

nF, record floods occurring randomly among 

non-record floods, m, is always determined from and 

by the classic hypergeometric sampling distribution 

function (see Ref. [43], pp. 52-55, and 68-69), and is: 

ி(݊ி)݌ 	≡ ,ி(݊ி݌ (ܯ,݉,ܰ = 	 ൬ ܰ݊ி൰ ቀ݉ܯቁ൬ ܰ ி݊ܯ+ + 	݉൰ (1)

As an example of this standard combinational 

notation, ܥ௡ಷே ≡ ൬ ൰ܨ݊ܰ = ൬ ൯!൰ܨ݊-൫ܰ!ܨ݊!ܰ , with the 

total number of, N, possible record floods being 

observed (or occurring) nF at a time among, m, the 

possible total non-records, M. Evaluation of the 

hypergeometric probability, pF(nF), for any nF, m, N 

and M values can be performed using the Excel 

HYPERGEOMDIST function routine3. Self evidently, 

the future risk does indeed depend on the past 

propensity for record flooding, and is based on 

knowing the uncertainties and duration span of the 

historical record itself, or what is often termed the 

“prior information” [43]. In Bayesian terminology, the 

likelihood of the next flood is 1/nF, which may or may 

not be identical to the prior ones so the Posterior 

probability is 1/N, for any future risk exposure. 

2.3 Classical Statistical Mechanics Theory 

The rate of outcomes, λ, is the change in the 

number of outcomes observed during an incremental 

variation of the risk exposure. Now, N, is the total 

number of record floods, so in terms of the observed 

number of (record flood) events, nF, of magnitudes, 

MF, the frequency/rate, ܯ)ߣி ) = 1(ܰ − ݊ி)	 ݀݊ி݀ܯி (2)

and ݌ி(ܯி) = ௡ಷ(ெಷ)ே  (3)

                                                           
3 To check the mathematical results, we obtained complete 
numerical agreement between the hypergeometric cases 
evaluated in and by Jaynes [43] with those same cases using the 
Excel 14.7.7 HYPERGEOMDIST routine. 
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The flood magnitude, MF, can be a volumetric flow, 

QF, or tidal height or river depth, HF, depending on 

measurement type and location. 

Not applied to flooding before, the distribution of 

the number, nF, of random events (in this case 

observed floods as a function of magnitude, MF) can 

be derived by applying and adapting the well-known 

classic methods and physically-based constraints of 

statistical mechanics [44-46]. Specifically for flood 

events, these are that: 

 record and non-record floods occur randomly and 

are counted in some past and present observational 

interval as distinct independent outcomes and are 

some systematic function of the risk exposure (flood 

flow or height, or operating dam-years); 

 probability of purely random record floods (past, 

present and future) is derivable from the total possible 

number, N, of all occurrences; 

 being random, many possible distributions of the 

observed flood outcomes or number of dam failures 

are equally likely; 

 distribution of the number of flood events 

recorded or observed as a function of magnitude is the 

most likely because that is the one that actually 

occurred; 

 number of possible distributions of all observed 

outcomes (floods and dam failures), given by N!/ΠnF! 

allows the standard use of Stirling’s factorial 

approximation4 [44]. 

For any observed sample of floods these constraints 

result in distribution formulae that are always simple 

exponential forms [44, 45]. The number of random 

flood events, nF, is [3, 46, 47]: ݊ி(ܯி) = 	݊௠ + (ܰ −	݊௠)݁ିఊெಷ (4)

The naturally arising constants to be determined are 

the e-folding characteristic, γ, and the minimum 

number, nm, being the lowest attainable or actually 

observed. From Eqs. (3) and (4) the probability of 

                                                           
4  By illustration, the possible number of combinations or 
occurrence sequences is W = N!/ΠnF! and W = 3,628,800 just 
for nF = 1 record flood observed randomly among a total 
possible of only, N = 10. 

observing any flood is, ிܲ(ܯி) = ௠݌ + (1 − ௠)݁ିఊெಷ݌ 	≈ ଴݁ିఊெಷ݌	 (5)

The standard Excel Add Trendline fitting routine 

contains this exponential form, which is just a 

working hypothesis at this stage to be validated by 

data. 

3. Comparisons of Theory to Data: 
Predicted Probability and Uncertainty of 
New Record Floods 

To illustrate the general methodology and address 

differing flooding scenarios, we select and focus on: 

(a) extreme or rare event occurrences; (b) where 

non-records are either present or absent in the 

observations; and (c) disparate causes due to river 

flows, coastal surges, hurricane rain and winds, plus 

dam overtopping and failures. Often the data are only 

available/published in graphical form so had been 

hand transcribed 5 , but the slight errors incurred 

(5-10%) are not important for demonstrating the 

principles of the predictive methods. The typical 

examples that follow cover the whole panoply of 

differing flood “types” but with similar data base 

challenges and predictive uncertainty. 

Once again, we emphasize that the real issue is 

fitting these extreme points at the right tail of the 

distribution, not just the bulk of the data forming   

the peak probability. Therefore, whenever possible  

we compared: (a) the hypergeometric estimates    

(Eq. (1)); (b) the plotted weighted Pearson Type III or 

EVD curves (as in Table 1); (c) Excel Add Trendline 

or weighted TableCurve 2D fitted exponentials    

(Eq. (5)). 

3.1 Record Tokomairiro River Flooding 

The first demonstration and intercomparison is for 

local record floods, being the simple case of 

volumetric flow rate data, QF, for N = 115 floods of 

the Tokomairiro River in New Zealand for 1961-2002 
                                                           
5 Whenever possible, we requested or gained access to original 
data files for the published plots, and where granted the source 
is acknowledged or referenced in the text.  
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[48] which flooded the City of Milton in 2006, 2007 

and 2010 [49], with local flash flooding in 2017. As 

conventionally, the flood count, nF, has been 

compared against multi-parameter GEV/EVD type 

distributions, so we transcribed the flood number data6 

from the original graph (Fig. 3 in Ref. [48]). 

Converting to probability by dividing the total count, 

N = 115, and taking the magnitude of the flood as 

equivalent to the flow, QF, Fig. 1 shows that simple 

exponentials fit the data well, at least based on the 

coefficient of determination7, for MF = QF in m3/s, 

using AddTrendline with R2 = 0.973, ݌ி(ܳி) = 	0.79݁ି଴.଴଻ହொಷ (6)

or using TableCurve 2D with R2 = 0.995. ݌ி(ܳி) = 	0.0023 + 0.82݁ି଴.଴଼ଵொಷ (7)

TableCurve 2D also provided the Weibull, GEV 

and Pearson VII fits which have R2 ~0.998 by 

adjusting the Table 1 parameters. 

The above simple exponential fits in Fig. 1 align 

more smoothly and better than the three GEV types 

shown in Fig. 3 of Ref. [48]; but more importantly can 

still capture the “right tail” minimum of the physical 

distribution caused by the rarer record floods. The 

correct probability method is the hypergeometric 

“probability of exceedance”, pF (nF, m, N, M) based 

on knowing the historical record itself, as well as 

postulating the future risk exposure. 

If the total record and non-records, (N + M), is 

taken as a measure of our total future risk exposure or 

experience, the total number of non-outcomes, M, 

clearly could have the effect on reducing the 

perceived or apparent outcome probability, nF/(N + M). 

This trend is also exactly what we see reflected in the 

data, and on reflection is trivial and obvious. 

Re-examining the Tokomairiro River case discussed 

                                                           
6 Mohsson [48] used the terminology “frequency” to describe 
the flood number count, nF, in discrete ranges or “bins” of 
flowrate, QF. 
7 Note the usual goodness of fit parameters (R2, Fstat, moments 
etc.) is not the best or most sensitive measures for fitting a few 
“tail” data points, being heavily influenced by the vast majority of 
“normal” data, and barely at all by the few rare records at the “tail”. 
 
 

above [48], since there were 115 floods observed 

already the probability of the very next flood  

equaling or exceeding the prior record flood of QF = 

65 is pF (1, 1, 1, N) = (1, 1, 1, 115) = 0.008695. This 

result confirms the assumption of randomness as it  

is precisely the LaPlace-Bayes-Jaynes uniform 

posterior value, pF = 1/N = 1/115, but some 40% more 

than pF (QF > 65) = 0.0062 derived from the fitted 

equation. 

3.2 Record Big Sandy River Flooding 

This test case has both non-record and record data, 

being the typical and traditional example in the FEMA 

Flood Risk Assessment course ([29] Fig. 4.1) showing 

the standard probability plot of flowrate (discharge) Q, 

versus the probability, pF (> Q). For this Big Sandy 

River specific case, there are non-flood points (m = 44) 

for 1930-1973, and three (nF = 3) largest historical 

record flows observed during 1897-1973 and the 

FEMA fit to the data is stated to be a usual “weighted 

Log Pearson Type III”. Because the Pearson line is 

extrapolated beyond the database, strictly all we can 

say is the new record flow magnitude, QF, will be 

greater than the last record, or more than about 28,000 

cfs. 

Consider further the all-important “right tail” 

caused by just having three rare record floods with an 

average probability of pF (QF > 18,000) = 0.025. 

The hypergeometric probabilities for these three 

record data points, nF = 1, 2, 3, are pF (1, 1, nF, 47). 

For example, having observed the three records out   

of n + m =47 prior observations, the hypergeometric 

probability of the next flood being a record is pF   

(QF > 28,000) = pF (1, 1, 3, 47) = 0.064, which again 

is trivially identical to nF/47 = 3/47 = 0.064. 

The weighted TableCurve 2D fitted exponential is, ݌ி(ܳி) = 0.001 + 1.28݁ି଴.଴଴ଶଵொಷ  (8)

This typical comparison is shown in Fig. 2, where 

the three different estimates (a-c) have an average 

probability pF (QF > 18,000) ~0.03 for the three record 

points, a difference of 30%. 
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Fig. 1  Probability of flood flows for Tokomairiro River and the theoretically based fits. 
Source: data from Ref. [48]. 
 

 
Fig. 2  Illustration of alternative estimates for the probabilities and “tail” for the FEMA Flood Risk Course standard example. 
Source: Fig. 4.1 of Ref. [29]. 
 

3.3 Record Hurricanes Induced Floods 

For unexpected major storms, we found new flood 

gauge records in the extensive river “stage height” 

graphs for Hurricane Florence [50]. As stated: 

“Florence analysis confirms extreme 3-day rainfall 

amounts exceeded 0.1% probability event expected in 

given year, or was a ‘once in 1,000-year’ event” [51]. 

A typical gauge example8 for the Little River showed 

                                                           
8 Of the gauge locations with totally new record floods, in the 
spirit of this study this record history was chosen at random 
from among those that had a prior NWS magnitude distribution 
and a listing of historic prior floods. 
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a new record flood where the prior historic record was 

for 1929-2016 (87 years), so was indeed almost the 

one-in-a-hundred-years flood. For this Little River 

example case, on the National Weather Service (NWS) 

past probability graph [50] there were (m + nF) = 63 

prior data points (8 records and 55 non-records over 

the 87 years) with, of course, nF = 1, the one new 

“extraordinary” record beyond the prior listed total 

past record or peak floods at this specific location. As 

a reality check, the hypergeometric past or prior 

probability, pF (nF, 8, 63, 71) has a peak value ~0.4; 

and the CDF probability, Σn pF (nF), of having the 

observed 8 record events is indeed unity. The 

concomitant record flooding also damaged the electric 

power system. 

For coastal record floods due to extreme 

precipitation not sea surges, Hurricane Harvey 

(Category 4) made landfall at Corpus Christi in Texas, 

and then stalled over Houston in Texas, causing the 

worst rainstorm in U.S. history. The precipitation rate 

was 10” (254 mm) per day with massive concomitant 

local flash flooding of inland rivers, creeks, and 

bayous that entirely swamped the surrounding 

suburban areas and the city. From 25 August to 28 

September 2017 we downloaded rainfall and water 

level data for selected flood warning stations [52], and 

estimated the frequency from the period or number of 

years, y, since a flood event last occurred or has not 

occurred, i.e. λ ~1/y. The startling observation is the 

factor of ten underestimations of the frequency of 

occurrence for a flood depth expected and known to 

exceed the bank heights for the same bayous and 

creeks, and excluded the delayed and necessary 

release of excess water from overwhelmed flood 

control dams. 

3.4 Record Venice Tidal Flooding 

In total contrast, we examined aperiodic tidal 

flooding having entirely different origins from that 

due to sudden major storms or overflowing rivers. For 

Venice, Italy, the acqua alta data, HF, are available 

on-line [12], where the floods are ascribed to tides 

coupled to variations in atmospheric pressure and 

winds, plus the systematic subsidence of the Venetian 

Lagoon [53]. Being tidal in nature, the peak floods 

generally last for about 3 hours, are quasi-repetitive, 

and have been extensively modeled using geographic 

and statistical methods to inform the design and 

operation of new flood control and prevention barriers 

[53]. 

We substantiated the random nature of the peak 

flood levels using the data for 52 years (1966-2018) in 

which there was a total, N = 5,986, measurements of 

flood levels, HF, greater than 80 cm listed in 10 cm 

increments (or bins), nF, up to the record of 190 cm 

[12]. As shown in Fig. 3, the listed flood level 

frequency distribution, λ(HF) = nF/52 per year, follows 

almost exactly the symmetric Gaussian or “normal” 

distribution about an average flood value as: ܪ)ߣி ) = ௠ߣ + ଴ߣ) ௠)݁ି଴.ହ(ுಷିுಷതതതത)మ (9)ߣ	−

The values derived using Tablecurve 2D are, with 

R2 = 0.994 and for HF > 80 cm, ܪ)ߣி	 > 80) = 0.029(0.69 − 	0.029)݁ି(଴.ହ(ுಷିଵଶ଻	)మ/ଵ଴.ଷଷ) 
Note the implied “tail” rate value of λm = 0.029 per 

year (one in 34 years), and the mean flood level M୊തതതത = 127	cm . Since the data follow a normal 

distribution this confirms our fundamental  

hypothesis that the flood levels are statistically 

random occurrences, as also shown by the data   

point for the latest “near record” flood in November, 

2019. 

The probability analysis of these same 1966-2016 

data gives a different perspective. The probability, p୊(H୊) = ୬ూ୒ , of a flood at any level, HF, is shown in 

Fig. 4, and compared to both using hypergeometric 

sampling and the exponential best fit values from 

TableCurve 2D, with an almost perfect R2 = 0.9998 

for the entire data set, ݌ி(ܪி) = ,1)݌ ݊ி, 1,5986)	 or			݌ி(ܪி) = 0.00016 + 810݁ି(଴.଴ଽுಷ) 
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Fig. 3  Normal frequency distribution for tidal flood heights in Venice. 
Source: data from Ref. [12]. 
 

 
Fig. 4  Declining “tail” probability of flood levels for Venice and theoretical fits. 
 

The hypergeometric result is exact, whereas the 

best exponential statistical fit again deviates slightly at 

the “tail” of the lowest probabilities for the rare events. 

Naturally, the uncertainty for this “rare tail’ or record 

event is because of the few data points, and the new 

2019 data point has a probability of 1/(N + 1) = 

1/5,987 = 0.000167, a small but important 6% difference 

from the value predicted by the exponential fit. 
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The hypergeometric analysis assumes no changes in 

flood control measures or weather patterns. For 

Venice in 1966-2018 having already had one all-time 

record, MF > 190 cm out of N = 5,986 floods, the 

chance that the very next one will be also > 190 cm is, 

pF (1, nF, 1, N) = pF (1, 1, 1, 5,896) = 0.00017, or one 

in 5,896, exactly the estimate based on the LaPlace 

probability, pF = nF/N = 1/5,986 = 0.00017, for the 

event count. Simply assuming a uniform occurrence 

probability over the last fifty-two years, there is an 

average of λ = 5,986/52 = 115 flood events of > 80 cm 

per year. Trivially, on average another record       

HF > 190 cm can be expected within the next  

fifty-two years (i.e. 5,896/115). Note that the new 

Venice MOSE barrier is designed to handle floods  

up to 3 m (9.8 feet) from which any projected 

systematic or overall level rise perhaps should be 

subtracted. 

3.5 Record Floods and Systematically Increasing Sea 

Levels (Climate Change) 

To examine changing the threshold for exceeding  

a flood of any given height is the case of systematic 

(or climatic induced) sea level rise. For example, 

Venice having already observed the 10 out of   

5,986 floods with levels, MF >140 cm, the chance that 

of the next 10 floods there will be one > 140 cm is,  

pF (1, 10, 10, 5,896) = 0.017, or about 1 in 58, or 

about ten times (10×) the risk as having one new 

all-time record. The difference between one in 52  

and 34 years for the normal vs. hypergeometric   

risk estimates, respectively, is one possible measure of 

the uncertainty in the prediction of having a new 

record. 

Methods to include such future sea level rise trends 

for coastal floods have been introduced (e.g. Refs. [4, 

11]). As part of a risk-benefit study, using one 

Netherlands gauge station, the peak tidal level 

frequency for a 137-year gauge record has been fitted 

by a simplified GEV (Ref. [7], Fig. 2). We were 

kindly supplied the original data file9, and instead of 

frequency, calculated the occurrence probabilities for 

every 5 m height over the range 210 < HF < 260 m. 

The probability of one record peak, nF = 1, among the 

M = 137 prior non-peaks, P (1, n, 1, 137) is, ݌ி(݊ி) 	≡ ,ி(݊ி݌ (ܯ,݉,ܰ = ,ெಷ(1݌ ,(ிܪ)݊ 1,137) 
The results show that the probability of occurrence 

of any new peak height is actually normally 

distributed (cf Venice Fig. 3), and the best fit is the 

simple Gaussian distribution (dotted line) shown in 

Fig. 5. This result confirms again that the peak levels 

occur randomly with a normal probability distribution 

centered on circa 286.5 m. 

The fit suggests the new record flood probability is 

0.01174, but within the range 1/137 < p < 3/137 

spanned by the data points at the “tail” of 0.0146. 

Hence there is about a 1.5% chance of a new record 

flood. 

3.6 Dam Failures and Flooding 

Finally, we examine dam failures which are also 

usually caused by unexpected precipitation or other 

natural events and presumably cause locally record 

flooding. Being a rare but perceived societal hazard, 

guidelines for evaluating dam safety risk management 

exist from Federal Emergency Management Agency 

(FEMA) [15] and the US Bureau of Reclamation [37]. 

Prior and future risk exposure is measurable by the 

time in dam-years, Dy, spent actually holding water, 

analogous to aircraft accumulating flight-miles, trains 

the train-miles traveled, or the number of 

patient-operations of surgeons. For all dam types and 

failure modes, the US National Bureau of 

Reclamation (NBR) has data with accumulated 

experience of over 100,000 dam-years (Dy) including 

the oldest earthen dams [54]; and the National 

Performance of Dams Program (NPDP) of some 1.7 

million dam-years for all US dams [16]. 
 

                                                           
9 We are extremely grateful to P. C. Oddo for supplying these data 
and for further technical remarks regarding the present analysis. 
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Fig. 5  Fitted normal probability distribution (dashed line) of flood surge heights (open circles) in Netherlands over 137 years. 
Source: data from Ref. [7]. 
 

Using the exponential Eq. (5), the statistical fitting 

routine TableCurve 2D gave a minimum dam failure 

rate for the NBR dams of order three per 10,000 

dam-years, or a rate of 0.0003 dam failures each year 

[42]. For the 90,000 dams in the US NPDP database, 

there were about nF ~2,296 failures over the last 120 

years or so, or about 20 per year and have an overall 

average past/prior failure rate of about nF/Dy = 

2,296/1.7 M ~0.001 per operating dam-year, by far the 

lowest found failure rate for any technology or 

human-made structure. 

The probability of dam failure was calculated using 

the available NPDP subset data base10, as a function 

of individual dam operating age, “binned” in yearly 

intervals so pF = nF (Dy)/N(Dy), for any given age (in 

years). The result was bathtub shaped analogous to 

many mechanical components, decreasing during 

wear-in and then increasing due to wear-out (see Fig. 

6) presumably due to the deleterious effects of aging 

and increasing accumulated risk exposure. 

While completing the original analysis, another 
                                                           
10 We are extremely grateful to Professor M. W. McCann of 
NPDP for compiling and supplying these original, 
comprehensive and most useful data.  
 

unexpected major flooding occurred due to overtopping 

failure of a 96-year old dam at Edenville, Michigan 

[55]. This data point is shown shaded in Fig. 7 as a 

new record flood for either Michigan (with N = 2,600 

dams) or nationally (N = 90,000). Depending on 

which national or state dam population group this 

failure is believed or attributed to belong, the failure 

probability is 0.00005 < pF (Edenville) < 0.0004. This 

new result implies an order of magnitude predictive 

uncertainty in general accord with the overall prior 

1900-2020 historic trend, and still very unlikely. 

4. Results and Predictive Summary 

A summary of the cases studied in Sections 3.1-3.6 

is given in Table 2, plus for the recent flooding of the 

Red River, providing alternative estimates for many 

disparate locations with individual case estimates 

differing by factors of up to 10. Being totally 

independent events with, 0.00016 < p (MF) < 0.04, 

strictly we cannot combine or “pool” the results. The 

naive generalization is that the event probability is 

about a one in a few hundred chances of a future flood 

exceeding existing barrier heights, prevention capacity 

and/or record water levels within the foreseeable  
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Table 2  Example “new” record flood probability comparing Pearson or EVD, hypergeometric and exponential predictions. 

Location/flood case Data span (y) Total prior # Pearson or EVD 
Hypergeometric 
P (n, m, N, M) 

Exponential 

NZ/Tokomairiro R 40 115 0.0086 0.009 0.0023 

USA/Big Sandy R 43 47 0.01 0.064 0.001 

USA/Potomac R 35 100 0.004 0.032  

USA/Rariton R 31 103 0.001 0.032 0.002 

USA NC/Little R 87 63 0.018 0.04 0.01 

USA AK/Red R 74 116 0.017 0.036 0.018 

Italy/Venice 83 5,986 N/A 0.00016 0.029 

Netherlands 137 137 N/A 0.014 0.012 

USA/Houston TX 23 9 N/A 0.1 0.015 

US dam failures 120 575 N/A 0.0001 0.0001 
 

 
Fig. 6  Bathtub failure probability for US dams and the recent Edenville failures. 
 

future, while flooding due to dam failures is at least a 

factor of ten less likely, with individual locations 

showing a predictive uncertainty of a factor of three to 

ten. 

There is no advantage in endlessly debating or 

statistically examining which arbitrary equation is the 

“best fit” to the overall data distribution(s) if it is only 

relevant to “normal” and non-record conditions. To 

determine the future risk, we must distinguish 

between the past (statistically, the known prior) and 

the future (statistically, the unknown posterior), which 

includes the somewhat controversial arena of 

prediction using statistical reasoning, a subject 

addressed in great detail elsewhere [43]. 

Rather the efforts should be directed to determining 

the uncertainty in making rare new record  

predictions and to gain more predictive insights. This 

changes flood prediction from being purely a 

statistical exercise to a social decision-making and 

risk management activity. We next consider  

examples of recent power outages due to new record 

flooding. 



Record Flooding Risk and Power Outage Restoration 

 

141

5. The Link of Flooding Extent to Power 
Outage Restoration 

Parts of the power system may be above “flood 

level” or not affected by rising water, and some delay 

occurs before water depths affect the electric 

distribution, circuit connections, substations, facilities 

and infrastructure, typically peaking 50-100 hours 

after storm onset [3, 47]. Extensive data show the 

probability distribution in the USA of exceeding a 

large multi-MW(e) outage size, Q*, as a fraction of the 

probable average of the data set, is similar but not 

identical to EVD types (as in Table 1), being a double 

exponential with a learning theory constant, k [56], 

where, ܲ(ܳ∗) = (1 −	݁ି ଵ୩ொ∗ቄଵି	௘షೖೂ∗ቅ) (10)

The largest outage events are always extreme 

weather related so the infrastructure and property 

“degree of damage” should be related to the area or 

extent of flooding. For Venice, the data for percentage, 

D, of the city flooded [12] show the linear 

(proportional) correlation with flood height, HF, with 

R2 = 0.939, for HF > 86 cm, as ܦ(%) = 	௙ܪ	0.91 − 79 (11)

The excellent on-line USGS/NWS system has over 

100 gauge records distributed in the region impacted 

by Hurricane Florence flooding [50, 51]. Assuming a 

random gauge distribution in the most flood prone 

regions, an indirect indication of flooding extent is 

defined by the fraction or probability of river gauges 

showing flooding as given by, P(g) = g/G, where g is 

the number of gauges showing flooding out of the 

working total, G. The relation between this probability 

of flooding, P(g), and power outage non-restoration, 

P(NR) for storm Florence is shown in Fig. 7. The 

flooding peak occurred after some 70 hours, or 30 

hours after the peak in power outages, reaching a 30% 

chance before declining. Flooding persisted as 

drainage and recovery took longer, and some 70% of 

power system restoration occurred after the flooding 

peaked at h = h0, presumably as defenses were 

progressively restored. 
 

 
Fig. 7  The observed relation of gauge flooding to power system outages during hurricane Florence. 
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Comparable to Venice, one plausible assumption is 

that the probability of power non-restoration due to 

flooding, P(F*), after the peak, h > h0, is conditionally 

dependent on and/or directly proportional to the extent 

represented by the probability of (river) gauge 

flooding. Symbolically, we already know the 

probability of power non-restoration, P(NR), is 

exponential in form [3]. The probability of power 

outage non-recovery solely due to flooding is, from 

Fig. 7 for Hurricane Florence, the best fit to the data 

with an R2 = 0.94, 			ܲ(ܨ∗)௛வ௛బ = 		0.25 ݁ି଴.଴ଶଶ(௛ି௛బ) (12)

This implies of course that a maximum of some  

25% of the persistent outages are directly attributable 

to the difficulties caused by flooding. Lacking other 

evidence or alternative, this relation or something 

similar is assumed to be generally applicable to any 

power system susceptible to flooding. The parameter 

values in Eq. (12) are presumably dependent on the 

specific factors of flood zone geography, topology, 

hydrology, power system design, and unique gauge 

locations and distribution. The overall restoration rate 

remained largely unaffected [3], being essentially the 

same for Hurricane Irma as for Hurricanes Florence 

and Harvey because of the dominant access 

difficulties caused by flooding. 

6. Conclusions 

Despite many studies and masses of data, the past 

frequency of floods is not the future probability of a 

completely new record flood occurring that will 

overwhelm our defenses. Therefore, in the present 

pragmatic approach, we focus on estimating the 

probability of exceeding the previous record(s) or 

having a rare “extraordinary” flood. The key point is 

that new record floods do not necessarily follow the 

statistical distributions of more frequent events that 

have been previously adopted for meteorological 

forecasting, or extreme value distributions fitted to 

past peak precipitation and stream flow data. What we 

have learned has national as well as systems 

engineering implications. 

Present predictive models, systems methods and 

statistical techniques used are subject to great 

uncertainty because: 

 The occurrence of new record rare events is 

random, so it is difficult to adequately include in 

standard hydrological and meteorological models that 

are tuned to a multitude of prior historical data; 

 By definition, a record flood is greater than 

anything in the past but is rare, random and 

unexpected, so it is difficult to demonstrate existing 

mitigation and control measures will not be 

overwhelmed; 

 The impact on vital infrastructure like power 

systems is at present barely included in present flood 

risk assessments since the focus is on property 

damage, cost and protection. 

For widely disparate flood types for rivers, tides, 

hurricanes and dam failures, we applied differing 

approaches to predict new records, compare 

traditional empirical fits to a theoretical exponential 

based on statistical theory and to random 

hypergeometric sampling. Addressing our objective, a 

naïve generalization is that for naturally occurring 

rare new record flooding the statement is: “There is 

about a one in a few hundred chance of a future flood 

exceeding existing barrier heights, prevention capacity 

and/or record water levels within the foreseeable 

future, while flooding due to dam failures is at least a 

factor of ten less likely, with individual locations 

having a predictive uncertainty of a factor of three to 

ten”. 

Instead of debating or statistically examining which 

arbitrary equation is the “best fit” and really only 

relevant to “normal” and local conditions, efforts 

should be directed to determining the uncertainty in 

making such rare new record predictions. We need to 

continually examine rare event limits to gain more 

predictive insights, since the link exists between 

extreme event extent and power outage duration. By 

illuminating the uncertainties, the results impact 
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disaster resilience, infrastructure vulnerability and 

emergency preparedness measures, and assist in 

communicating the realities of extreme flood 

prediction. 
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