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Abstract: We need to predict the probability of unprecedented flooding of lands and coastlines due to unexpected storms,
overflowing rivers, hurricanes, tidal surges and dam failures. This paper addresses new record floods that exceed all prior “historic”
levels and are invariably due to extreme or severe weather and/or unexpected precipitation, defeating barriers and causing extensive
power system outages. Given their inherently low occurrence, the probabilities of new (rare) record floods are treated as random
outcomes and independent events using classical statistical mechanics and related hypergeometric sampling. This analysis
straightforwardly replaces tuning or fitting to “normal” precipitation, regular tides and prior flood data and the traditional use of
multi-parameter extreme value distributions (EVDs) used for weather-induced flood forecasting and estimating “return periods”. The
approach is not reliant on geographic computer models, meteorological forecasting, published “flood zone” charts, or hydrological
techniques and images. We illustrate the universal applicability of this Bayesian-style approach of solely addressing new records for
a wide range of specific flooding case studies for rivers, major hurricanes, quasi-periodic coastal tides, and dam failures. The
quantitative link is shown between extreme event extent and power outage duration, and the results impact disaster resilience,
infrastructure vulnerability and emergency preparedness measures.

Key words: Floods, planning, rare events, risk, rivers, dams, probability.

1. Introduction: New Record Flood Risk
1.1 The Predictive Need and the Present Approach

We need to predict the probability of unprecedented
flooding of lands and coastlines due to unexpected
storms, overflowing rivers, hurricanes, tidal surges
and dam failures. Known as “extraordinary floods” [1]
by its very definition, a new “record” flood exceeds
all prior floods in height and extent, and is an
“unknown known” and usually results in extended
power outages. As suggested by P. C. Oddo (private
communication, 2020) this could mean “that our
current conception of the future could be
fundamentally different from the present or the past”.
Since extreme flood events will occur, the only
question is risk quantification defined as the inevitable
probability of a new record flood.

The present approach of rare-event risk assessment
for the probability of flooding is based on the

established statistical mechanics of physical systems.
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A wide range of specific example case studies include
flooding from New Zealand and US rivers, recent
major US hurricanes (Harvey, Irma and Florence),
high tides in Netherlands, the repetitive tides in the
Venice Lagoon, and the occurrence of dam failures.
The quantitative link is shown between flooding
extent and power outage duration, and a new
correlation developed for the probability of extended
non-restoration and its duration.

Our primary interest is in predicting the unexpected
new record and the subsequent restoration of power
system infrastructure due to the occurrence of record
floods, to help defining barriers, defenses or controls
which focus on disaster resilience and emergency
preparedness [2, 3]. As pioneered in the Netherlands
[4], we consider flood probability as a measure of the
predictive uncertainty, because of the direct impact on
disaster resilience, infrastructure vulnerability and
emergency preparedness measures for extreme
flooding events [5, 6]. Given that all non-record
floods are implicitly societally acceptable, for any
location the desired final statement sought is of the
form: “There is a one in X chance that the next flood
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will exceed existing barrier heights, prevention
capacity and/or record water levels within the
foreseeable future”. So determining the value for X is
the recurring question.

Despite clear economic justification, the present
work is not based on any economic decision making
such as cost-benefit trade-off [7], societal risk cost
inter-comparisons [8], or funding allocation based on
land loss [9, 10]. There have been extensive (and
expensive) studies of the financial risk and economic
factors for prioritizing river and coastal flood
prevention measures, especially in the USA [6, 7, 10,
11]. Enhanced flood prevention measures for just the
massive Dutch [4], Venice [12], and New Orleans [13]
projects have a cost many $B, and will still need
future upgrading.

Humans globally now occupy more floodable lands
and coasts exposed to unprecedented events [e.g. 4, 6,
14] while more dams are operating [15, 16]. There is
concern that flood and storm magnitudes and
frequency are perhaps increasing due to systematic
climate change, and the excellent review [17],
identified 3,173 events in 25 years but states: “we
should not assume that this long-term record is the
best predictor of the future”. This is
justification for the present study and attempt.

ample

Methods

Socio-economic Risk

1.2 Previous Used for Floods and

Forecasting weather and flooding 1is the
traditional realm of the established hydrological
[1, 17-19; plus

water.weather.gov and www.weather.gov]. Past and

and meteorological disciplines
present river and coast water levels are coupled to
weather forecasting using computer modeling and
“ensemble” predictions [20] and elaborate statistical
curve fitting for the probability of potential flow or
height [21]. Being linked to weather forecasting, there
are many excellent and key references on models used
world-wide for the frequency and magnitudes of
historical flooding due to past storms and stream

flows (as a sample see Refs. [1, 19-28]).

By definition, new records are “known unknowns”
resulting from an unexpected hurricane, tsunami or
downpour, and may include failure of existing
engineered preventative measures (overloaded levees,
pumps, sea walls, storm drainage, etc.). We cannot
predict when record floods will occur, and it is clearly
stated that: “As a rule of thumb, statistical methods
should not be used to estimate recurrence intervals in
years that are more than twice the number of years of
available homogeneous data” [29].

The usual approach is to make the best statistical
fits' to the prior height or flow data, and all have
essentially very similar coefficients of determination
or “goodness of fit” parameters [19, 29, 30, 31]. The
only justification for their use is they can be tuned to
fit the data well even though the adjustable parameters
can number three, four, or more, but are not physically
distinguishable. The excellent US Geological Survey
(USGS) study [21] covered the basic methods and
carefully examined nine different fits, showing no
unique “best fit” prediction to the tail (Ref. [21], Fig.
9), and the uncertainties in making predictions beyond
the data range, in this case above the prior record flow
of about 70,000 cfs and below an exceedance
probability of 0.01.

The data fits are location and regionally different
and specific, and require “regional skewness
estimators” (see e.g. the excellent summaries in Refs.
[22-24, 32]). Also Bonnin et al. [22] also importantly
state: “The current practice of precipitation (and river
height and flow) frequency analysis makes the implicit
assumption that past is prologue for the future.
Furthermore, if the climate changes in the future, there
is no guarantee that the characteristics extracted are
suitable for representing climate during the future
lifecycle of projects being designed”. This issue was

! The formulae are often termed Generalized Extreme Value
Distributions (variously abbreviated as EVD, GED and GEVD),
or specifically named, and have three or more adjustable
parameters (see Section 3.2 and Table 1).
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also pointed out as due to globally and locally
changing climate and precipitation patterns [25].

For coastal regions worldwide, there are similar
statistical approaches and concerns for predicting
flood and storm surges (see Refs. [4, 13, 33-35]).
Standard (Monte-Carlo type) statistical sampling has
also been used for variations in the arbitrarily chosen
fitting parameters, and flooding probabilities or
frequencies are often extrapolated outside the data
base by ascribing uncertainty bands or assumed
“confidence” levels (see below). Coasts have
quasi-periodic tidal fluctuations superimposed on
potentially record high levels, and are different from
inland floods due to “one-off” river overflows. To
account for systematic sea level rise, the mean or
average tidal sea level data have been adjusted using
3rd order polynomials fitted by arbitrary, which again
are highly location and data range specific (see Refs.
[7, 11]).

Hence, in summary, it is well known from all this
extensive and detailed work that:

(a) Sophisticated distributions fitted to prior data
for frequency or number of floods, storm surges or
precipitation events are physically arbitrary and
multi-parameter, and therefore only strictly applicable
within the existing data range and may not properly
include the tail of random rare events.

(b) The assumption that the future is just like the
past historical (prior) data does not account for any
systematic or recent shifts or significant changes in
weather patterns, precipitation or climate, which have
been and are actually observed whether attributed to
climate change or not.

(c) Extensive numerical flood depth data are
generally not available for intervals longer than 50 to
100 years, are often incomplete, and relevant
hydro/paleo/geologic data are scarce.

(d) Modern precipitation analyses, computer
models and statistical methods are well developed and
tuned to daily, weekly and multi-year weather

forecasting, but not to the worst few one-off rare or

extreme events (due to unexpected hurricanes, major
storms, tidal surges, typhoons etc.) so do not predict
unusual flooding events well.

Since the real issue is fitting the few extreme points
at the right tail of the distribution, past studies try to
allow for the resulting greater uncertainty, sometimes
referred to as “deep uncertainty”, but are inherently
biased since they usually retain and the fits are
weighted by the bulk of the non-record data forming
the peak probability.

In 2012, the UK reported the “wettest winter for
250 years”, but despite this new record the flood
zones are still defined by yearly occurrence’, and
flood risk delineated by distinct but entirely arbitrary
categories [36], viz:

e “—high risk...each year, there is a 3.3% chance
or greater;

* medium...each year, there is between a 1% and
3.3% chance;

* low risk...each year, there is between a 0.1% and
1% chance;

* very low risk...each year, there is less than 0.1%
chance”.

This ranking implies the completely new record
was a “low risk” at 0.4% per year (i.e. probability of
0.004 for once in 250 years). We do not use such
unsupported  relative  risk  level,  empirical
classification, yearly “frequency” or rankings; and
also reject defining acceptable risk boundaries on the
basis of event frequency vs. consequences measured
in deaths or money (see Refs. [13, 15, 29, 37]). Using
quantitative frequency-versus-deaths (F-N curves) as
the risk measure literally allows trades between deaths
and frequency for obtaining the same risk, using what
is called a “Societal Tolerable Risk Limit” boundary.
For example, for existing dams a failure frequency of
one in a million dam-years resulting in a cut-off limit

of 1,000 deaths is the same tolerable “risk” as one

% Equivalently, a 0.1% chance in a year is a frequency of
107%/year or the apocryphal one-in-a thousand years’ event.
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death for a failure of one every thousand years. As
justification, the USBR report [37] simply states:
“(Bureau of) Reclamation defines this risk as
Annualized Life Loss, and uses a guideline of 0.001
fatalities per year to address this measure of risk”;
while economic losses and impacts “may be important
considerations in
Working backwards, the
cost-of-a-life lost varies widely [38] being somewhere

the decision-making process”.
“statistical value” or
in the range of $1-10 M, so 0.001 implies only a
completely negligible financial/societal risk exposure
of $1-10,000 per death per year. Only if more than
1,000 are killed is the lost value greater than $1 M
which is still “tolerable”, but surely negligible
compared to the likely $Bs of infrastructure damage
and repair costs.

Using geographic - hydrographic - socioeconomic
computer modeling, about 40 M people and $3 T are
estimated to be at future or potential risk to a
“once-in-a-hundred year flood” in the US alone [26],
comparable to the cost of a major viral pandemic. The
past cost of US flooding risk has been estimated as
$90 B and over 700 deaths during 2004-2014, and will
likely become worse [6]. In England there are about
5 million properties at risk of any type of flooding,
with an annual insurance cost of more than $3 B,
with 14% or 7,000 sites of the electrical infrastructure
at risk [36]. The fiscal and societal risk is actually
huge.

1.3 Present Scope and Objective

Pragmatically, we only seek the probability of

exceeding the previous record flood in some
(unknown or chosen) future and treat all record floods
as random outcomes or events, subject to statistical
and physical constraints. Support to the present
approach is also in USGS Bulletin 17C p. 21: “In
general, a time series of annual peak-flow estimates
may be considered to be a random sample of
independent, identically distributed random variables”

[1]. We simply extend this concept to describe the

occurrence of new record (extraordinary) floods that
do not follow standard statistical distributions; or
occur at any known variance, multiple standard
deviations or moments from some average, median or
central value. In addition, systematic changes in
“normal” water levels and geology/geography can
affect long-term predictions.

We first briefly discuss existing predictive and
flood risk analysis approaches and develop the new
established
mechanics of physical systems. We then provide test

approach based on the statistical

cases, and link to power outage extent and probability.

2. Probability and Rate of Record Floods:
Theory and Comparison of Predictions

To attempt to inform this problem, we adopted
simple sampling of observations based on standard
assumptions, physical reasoning and traditional
statistical mechanics theory for observing random
outcomes. To illustrate the long-standing and
well-known fitting and consequent predictive problem
we compared three different approaches to quantify
the “tail” uncertainty: (a) the usually plotted Extreme
Value Distribution (EVD) and weighted Pearson Type
III curves; with (b) the hypergeometric and statistical
sampling estimates; and to (c) standard Excel Add
Trendline or weighted TableCurve 2D mathematical

fitting routines.
2.1 Traditional Generalized EVDs

Typically, arbitrary three or more parameters
“Generalized Extreme Value Distributions” (GEVD)
and Pearson type are used for floods [7, 19, 26, 30, 31]
and also for power outages [39]. The only justification
for their use is they can be tuned to fit the data well
even though the adjustable parameters can number
three, four, or more. Not physically distinguishable,
the EVDs have been written with many different symbols
for the various constants and the zero-offset, u (for a
range of examples, see Ref. [40]) and are exponential

functions of similar general form.
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Table 1 Typical EVD fitting parameters.

Distribution 14 o 4
Gumbell 1 0 e’ 1
Frechet 1 &g -1/& &
Weibull 1 a-oe -1/¢ ¢
Pearson 111, IV 1 ¢ 1 I
Modified Gaussian % 1 1 1

Typical popular variants are compared in Table 1,
where a, f, ¢, & ¥ and y are the adjustable fitting

parameters, and setting 9 = (MZ}_“ ), so p(Mgp) =

Yor _gB
e

These types plus some 3,000 other formulae
(including high-order polynomials) are available using
the commercial curve fitting software TableCurve 2D
[41]. While Ockham’s Razor suggests using the
simplest hypothesis or method, the reader is of course
free to adopt whatever best suits the purpose and
represents appropriately the physics, available data
and logic of the situation. For the present rare or
record event case, we seek the “best” fit to just the
“tail” record events, not to the overall distribution as
usual; and must avoid extrapolating EVD fits outside
the basic data range, as extensively described and
shown by Asquith et al. [21].

2.2 Hypergeometric Sampling

Since the occurrence of any past or new record
flood is purely random, we retain the original Laplace
“equally possible” definition of probability being the
ratio of numbers observed, n, to the total possible, N
[42]. Each flood event is completely independent but
part of some overall population, which may be subject
to local, regional and global shifts in geography,
geology, meteorology, oceanography and hydrology.
Observed record, np, or non-record, m, floods are
random independent events, out of total (sample)
populations of, N, and, M, respectively, and can occur
or be observed at any (unpredictable) moment and
represent our prior information or history. Therefore,
the probability of observing the outcomes, p(nr), of,

ng, record floods occurring randomly among
non-record floods, m, is always determined from and
by the classic hypergeometric sampling distribution

function (see Ref. [43], pp. 52-55, and 68-69), and is:

N\ M
pr(p) =pp(ng, N,m M) = ((111\;2_—(1\1/7)) (1)

ng+ m
As an example of this standard combinational

N . N)_( N! ) )
C"”:(np = —nF!(N-np)! , with the

total number of, N, possible record floods being

notation,

observed (or occurring) np at a time among, m, the
possible total non-records, M. Evaluation of the
hypergeometric probability, pA(nr), for any np, m, N
and M values can be performed using the Excel
HYPERGEOMDIST function routine’. Self evidently,
the future risk does indeed depend on the past
propensity for record flooding, and is based on
knowing the uncertainties and duration span of the
historical record itself, or what is often termed the
“prior information” [43]. In Bayesian terminology, the
likelihood of the next flood is 1/nr, which may or may
not be identical to the prior ones so the Posterior
probability is 1/N, for any future risk exposure.

2.3 Classical Statistical Mechanics Theory

The rate of outcomes, 4, is the change in the
number of outcomes observed during an incremental
variation of the risk exposure. Now, N, is the total
number of record floods, so in terms of the observed
number of (record flood) events, np, of magnitudes,
M, the frequency/rate,

M) = 1 dng 5
Mp) = N =ny) M, (2)

and
pr(My) = 20 (3)

3 To check the mathematical results, we obtained complete
numerical agreement between the hypergeometric cases
evaluated in and by Jaynes [43] with those same cases using the
Excel 14.7.7 HYPERGEOMDIST routine.
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The flood magnitude, M, can be a volumetric flow,
Or, or tidal height or river depth, Hr, depending on
measurement type and location.

Not applied to flooding before, the distribution of
the number, nr, of random events (in this case
observed floods as a function of magnitude, My) can
be derived by applying and adapting the well-known
classic methods and physically-based constraints of
statistical mechanics [44-46]. Specifically for flood
events, these are that:

* record and non-record floods occur randomly and
are counted in some past and present observational
interval as distinct independent outcomes and are
some systematic function of the risk exposure (flood
flow or height, or operating dam-years);

* probability of purely random record floods (past,
present and future) is derivable from the total possible
number, N, of all occurrences;

* being random, many possible distributions of the
observed flood outcomes or number of dam failures
are equally likely;

¢ distribution of the number of flood events
recorded or observed as a function of magnitude is the
most likely because that is the one that actually
occurred;

* number of possible distributions of a// observed
outcomes (floods and dam failures), given by N!/IIng!
allows the standard wuse of Stirling’s factorial
approximation® [44].

For any observed sample of floods these constraints
result in distribution formulae that are always simple
exponential forms [44, 45]. The number of random
flood events, ng, is [3, 46, 47]:

ng(Mp) = Ny + (N — nyp)e "Mr (4)

The naturally arising constants to be determined are
the e-folding characteristic, y, and the minimum
number, n,, being the lowest attainable or actually
observed. From Eqgs. (3) and (4) the probability of

* By illustration, the possible number of combinations or
occurrence sequences is W = N!/IIng! and W = 3,628,800 just
for np = 1 record flood observed randomly among a total
possible of only, N = 10.

observing any flood is,
Pp(Mp) = pp + (1= pp)e™™Mr = poe "Mr (5)
The standard Excel Add Trendline fitting routine
contains this exponential form, which is just a
working hypothesis at this stage to be validated by
data.

3. Comparisons of Theory to Data:
Predicted Probability and Uncertainty of
New Record Floods

To illustrate the general methodology and address
differing flooding scenarios, we select and focus on:
(a) extreme or rare event occurrences; (b) where
non-records are either present or absent in the
observations; and (c) disparate causes due to river
flows, coastal surges, hurricane rain and winds, plus
dam overtopping and failures. Often the data are only
available/published in graphical form so had been
hand transcribed’, but the slight errors incurred
(5-10%) are not important for demonstrating the
principles of the predictive methods. The typical
examples that follow cover the whole panoply of
differing flood “types” but with similar data base
challenges and predictive uncertainty.

Once again, we emphasize that the real issue is
fitting these extreme points at the right tail of the
distribution, not just the bulk of the data forming
the peak probability. Therefore, whenever possible
we compared: (a) the hypergeometric estimates
(Eq. (1)); (b) the plotted weighted Pearson Type III or
EVD curves (as in Table 1); (c) Excel Add Trendline
or weighted TableCurve 2D fitted exponentials

(Eq. (5)).
3.1 Record Tokomairiro River Flooding

The first demonstration and intercomparison is for
local record floods, being the simple case of
volumetric flow rate data, Qp, for N = 115 floods of
the Tokomairiro River in New Zealand for 1961-2002

> Whenever possible, we requested or gained access to original
data files for the published plots, and where granted the source
is acknowledged or referenced in the text.
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[48] which flooded the City of Milton in 2006, 2007
and 2010 [49], with local flash flooding in 2017. As
conventionally, the flood count, np has been
compared against multi-parameter GEV/EVD type
distributions, so we transcribed the flood number data®
from the original graph (Fig. 3 in Ref. [48]).
Converting to probability by dividing the total count,
N = 115, and taking the magnitude of the flood as
equivalent to the flow, Qp, Fig. 1 shows that simple
exponentials fit the data well, at least based on the
coefficient of determination’, for My = OF in m’/s,

using AddTrendline with R* = 0.973,

pr(Qr) = 0.79e70-075QF (6)
or using TableCurve 2D with R* = 0.995.
pr(QF) = 0.0023 + 0.82¢~0-0810QF (7)

TableCurve 2D also provided the Weibull, GEV
and Pearson VII fits which have R ~0.998 by
adjusting the Table 1 parameters.

The above simple exponential fits in Fig. 1 align
more smoothly and better than the three GEV types
shown in Fig. 3 of Ref. [48]; but more importantly can
still capture the “right tail” minimum of the physical
distribution caused by the rarer record floods. The
correct probability method is the hypergeometric
“probability of exceedance”, pr (nr, m, N, M) based
on knowing the historical record itself, as well as
postulating the future risk exposure.

If the total record and non-records, (N + M), is
taken as a measure of our total future risk exposure or
experience, the total number of non-outcomes, M,

clearly could have the effect on reducing the

perceived or apparent outcome probability, n/(N + M).

This trend is also exactly what we see reflected in the
data, and on reflection is trivial and obvious.

Re-examining the Tokomairiro River case discussed

® Mohsson [48] used the terminology “frequency” to describe
the flood number count, np, in discrete ranges or “bins” of
flowrate, Q.

7 Note the usual goodness of fit parameters (Rz, Fstat, moments
etc.) is not the best or most sensitive measures for fitting a few
“tail” data points, being heavily influenced by the vast majority of
“normal” data, and barely at all by the few rare records at the “tail”.

above [48], since there were 115 floods observed
already the probability of the very next flood
equaling or exceeding the prior record flood of Qp =
65ispr (1,1, 1, N)=(1, 1, 1, 115) = 0.008695. This
result confirms the assumption of randomness as it
is precisely the LaPlace-Bayes-Jaynes uniform
posterior value, pr= 1/N = 1/115, but some 40% more
than pr (Qr > 65) = 0.0062 derived from the fitted

equation.
3.2 Record Big Sandy River Flooding

This test case has both non-record and record data,
being the typical and traditional example in the FEMA
Flood Risk Assessment course ([29] Fig. 4.1) showing
the standard probability plot of flowrate (discharge) O,
versus the probability, pr (> Q). For this Big Sandy
River specific case, there are non-flood points (m = 44)
for 1930-1973, and three (nr = 3) largest historical
record flows observed during 1897-1973 and the
FEMA fit to the data is stated to be a usual “weighted
Log Pearson Type III”. Because the Pearson line is
extrapolated beyond the database, strictly all we can
say is the new record flow magnitude, Or, will be
greater than the last record, or more than about 28,000
cfs.

Consider further the all-important “right tail”
caused by just having three rare record floods with an
average probability of pr (QOr > 18,000) = 0.025.

The hypergeometric probabilities for these three
record data points, ng = 1, 2, 3, are pr (1, 1, ng, 47).
For example, having observed the three records out
of n + m =47 prior observations, the hypergeometric
probability of the next flood being a record is pg
(QOr > 28,000) = pr (1, 1, 3, 47) = 0.064, which again
is trivially identical to ng/47 = 3/47 = 0.064.

The weighted TableCurve 2D fitted exponential is,

pr(Qr) = 0.001 + 1.28¢70:0021CF ®)

This typical comparison is shown in Fig. 2, where
the three different estimates (a-c) have an average
probability pr (QF > 18,000) ~0.03 for the three record
points, a difference of 30%.
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Fig.2 Illustration of alternative estimates for the probabilities and “tail” for the FEMA Flood Risk Course standard example.

Source: Fig. 4.1 of Ref. [29].
3.3 Record Hurricanes Induced Floods

For unexpected major storms, we found new flood
gauge records in the extensive river “stage height”
[50]. As stated:

“Florence analysis confirms extreme 3-day rainfall

graphs for Hurricane Florence

amounts exceeded 0.1% probability event expected in

given year, or was a ‘once in 1,000-year’ event” [51].
A typical gauge example® for the Little River showed

8 Of the gauge locations with totally new record floods, in the
spirit of this study this record history was chosen at random
from among those that had a prior NWS magnitude distribution
and a listing of historic prior floods.
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a new record flood where the prior historic record was
for 1929-2016 (87 years), so was indeed almost the
one-in-a-hundred-years flood. For this Little River
example case, on the National Weather Service (NWS)
past probability graph [50] there were (m + np) = 63
prior data points (8 records and 55 non-records over
the 87 years) with, of course, np = 1, the one new
“extraordinary” record beyond the prior listed total
past record or peak floods at this specific location. As
a reality check, the hypergeometric past or prior
probability, pr (np, 8, 63, 71) has a peak value ~0.4;
and the CDF probability, X, pr (ng), of having the
observed 8 record events is indeed unity. The
concomitant record flooding also damaged the electric
power system.

extreme

For coastal record floods due to

precipitation not sea surges, Hurricane Harvey
(Category 4) made landfall at Corpus Christi in Texas,
and then stalled over Houston in Texas, causing the
worst rainstorm in U.S. history. The precipitation rate
was 10” (254 mm) per day with massive concomitant
local flash flooding of inland rivers, creeks, and
bayous that entirely swamped the surrounding
suburban areas and the city. From 25 August to 28
September 2017 we downloaded rainfall and water
level data for selected flood warning stations [52], and
estimated the frequency from the period or number of
years, y, since a flood event last occurred or has not
occurred, i.e. 4 ~1/y. The startling observation is the
factor of ten underestimations of the frequency of
occurrence for a flood depth expected and known to
exceed the bank heights for the same bayous and
creeks, and excluded the delayed and necessary
release of excess water from overwhelmed flood

control dams.
3.4 Record Venice Tidal Flooding

In total contrast, we examined aperiodic tidal
flooding having entirely different origins from that
due to sudden major storms or overflowing rivers. For

Venice, Italy, the acqua alta data, Hp, are available

on-line [12], where the floods are ascribed to tides
coupled to variations in atmospheric pressure and
winds, plus the systematic subsidence of the Venetian
Lagoon [53]. Being tidal in nature, the peak floods
generally last for about 3 hours, are quasi-repetitive,
and have been extensively modeled using geographic
and statistical methods to inform the design and
operation of new flood control and prevention barriers
[53].

We substantiated the random nature of the peak
flood levels using the data for 52 years (1966-2018) in
which there was a total, N = 5,986, measurements of
flood levels, H, greater than 80 cm listed in 10 cm
increments (or bins), ng, up to the record of 190 cm
[12]. As shown in Fig. 3, the listed flood level
frequency distribution, A(Hr) = ng/52 per year, follows
almost exactly the symmetric Gaussian or “normal”
distribution about an average flood value as:

AHg) = A + (g — Ap)e 0SWF=HR*  (9)

The values derived using Tablecurve 2D are, with
R*=0.994 and for Hy> 80 cm,

A(Hp > 80) =
0.029(0.69 — 0.029)e~(05(Hr=127)%/10.33)

Note the implied “tail” rate value of 4,, = 0.029 per
year (one in 34 years), and the mean flood level
Mg =127 cm. Since the data follow a normal
distribution  this  confirms our fundamental
hypothesis that the flood levels are statistically
random occurrences, as also shown by the data
point for the latest “near record” flood in November,
2019.

The probability analysis of these same 1966-2016
data gives a different perspective. The probability,

pr(Hp) = %, of a flood at any level, Hr, is shown in

Fig. 4, and compared to both using hypergeometric
sampling and the exponential best fit values from
TableCurve 2D, with an almost perfect R = 0.9998
for the entire data set,
pr(Hp) = p(1,n5,1,5986)
or pr(Hp) = 0.00016 + 810e~(0-09HF)
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The hypergeometric result is exact, whereas the event is because of the few data points, and the new
best exponential statistical fit again deviates slightly at 2019 data point has a probability of 1/(N + 1) =
the “tail” of the lowest probabilities for the rare events. 1/5,987 = 0.000167, a small but important 6% difference

Naturally, the uncertainty for this “rare tail” or record from the value predicted by the exponential fit.
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The hypergeometric analysis assumes no changes in
flood control measures or weather patterns. For
Venice in 1966-2018 having already had one all-time
record, Mr > 190 cm out of N = 5,986 floods, the
chance that the very next one will be also > 190 cm is,
pr(1, ng, 1, N)=pg (1, 1,1, 5,896) = 0.00017, or one
in 5,896, exactly the estimate based on the LaPlace
probability, pr = ng/N = 1/5,986 = 0.00017, for the
event count. Simply assuming a uniform occurrence
probability over the last fifty-two years, there is an
average of 1 =5,986/52 = 115 flood events of > 80 cm
per year. Trivially, on average another record
Hr > 190 cm can be expected within the next
fifty-two years (i.e. 5,896/115). Note that the new
Venice MOSE barrier is designed to handle floods
up to 3 m (9.8 feet) from which any projected
systematic or overall level rise perhaps should be

subtracted.

3.5 Record Floods and Systematically Increasing Sea
Levels (Climate Change)

To examine changing the threshold for exceeding
a flood of any given height is the case of systematic
(or climatic induced) sea level rise. For example,
Venice having already observed the 10 out of
5,986 floods with levels, My >140 cm, the chance that
of the next 10 floods there will be one > 140 cm is,
pr (1, 10, 10, 5,896) = 0.017, or about 1 in 58, or
about ten times (10x) the risk as having one new
all-time record. The difference between one in 52
and 34 years for the normal vs. hypergeometric
risk estimates, respectively, is one possible measure of
the uncertainty in the prediction of having a new
record.

Methods to include such future sea level rise trends
for coastal floods have been introduced (e.g. Refs. [4,
11]). As part of a risk-benefit study, using one
Netherlands gauge station, the peak tidal level
frequency for a 137-year gauge record has been fitted
by a simplified GEV (Ref. [7], Fig. 2). We were

kindly supplied the original data file’, and instead of
frequency, calculated the occurrence probabilities for
every 5 m height over the range 210 < Hr < 260 m.
The probability of one record peak, nr = 1, among the
M = 137 prior non-peaks, P (1, n, 1, 137) is,

pr(ng) = pr(ng, N,m,M) = py,.(1,n(Hg), 1,137)

The results show that the probability of occurrence
of any new peak height is actually normally
distributed (cf Venice Fig. 3), and the best fit is the
simple Gaussian distribution (dotted line) shown in
Fig. 5. This result confirms again that the peak levels
occur randomly with a normal probability distribution
centered on circa 286.5 m.

The fit suggests the new record flood probability is
0.01174, but within the range 1/137 < p < 3/137
spanned by the data points at the “tail” of 0.0146.
Hence there is about a 1.5% chance of a new record
flood.

3.6 Dam Failures and Flooding

Finally, we examine dam failures which are also
usually caused by unexpected precipitation or other
natural events and presumably cause locally record
flooding. Being a rare but perceived societal hazard,
guidelines for evaluating dam safety risk management
exist from Federal Emergency Management Agency
(FEMA) [15] and the US Bureau of Reclamation [37].
Prior and future risk exposure is measurable by the
time in dam-years, Dy, spent actually holding water,
analogous to aircraft accumulating flight-miles, trains
the train-miles traveled, or the number of
patient-operations of surgeons. For all dam types and
failure US National

Reclamation (NBR) has data with accumulated

modes, the Bureau of
experience of over 100,000 dam-years (Dy) including
the oldest earthen dams [54]; and the National
Performance of Dams Program (NPDP) of some 1.7
million dam-years for all US dams [16].

° We are extremely grateful to P. C. Oddo for supplying these data
and for further technical remarks regarding the present analysis.
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Using the exponential Eq. (5), the statistical fitting
routine TableCurve 2D gave a minimum dam failure
rate for the NBR dams of order three per 10,000
dam-years, or a rate of 0.0003 dam failures each year
[42]. For the 90,000 dams in the US NPDP database,
there were about ng ~2,296 failures over the last 120
years or so, or about 20 per year and have an overall
average past/prior failure rate of about ng/Dy =
2,296/1.7 M ~0.001 per operating dam-year, by far the
lowest found failure rate for any technology or
human-made structure.

The probability of dam failure was calculated using
the available NPDP subset data baselo, as a function
of individual dam operating age, “binned” in yearly
intervals so pr = np (Dy)/N(Dy), for any given age (in
years). The result was bathtub shaped analogous to
many mechanical components, decreasing during
wear-in and then increasing due to wear-out (see Fig.
6) presumably due to the deleterious effects of aging
and increasing accumulated risk exposure.

While completing the original analysis, another

19 We are extremely grateful to Professor M. W. McCann of
NPDP for compiling and supplying these original,
comprehensive and most useful data.

unexpected major flooding occurred due to overtopping
failure of a 96-year old dam at Edenville, Michigan
[55]. This data point is shown shaded in Fig. 7 as a
new record flood for either Michigan (with N = 2,600
dams) or nationally (N = 90,000). Depending on
which national or state dam population group this
failure is believed or attributed to belong, the failure
probability is 0.00005 < pr (Edenville) < 0.0004. This
new result implies an order of magnitude predictive
uncertainty in general accord with the overall prior
1900-2020 historic trend, and still very unlikely.

4. Results and Predictive Summary

A summary of the cases studied in Sections 3.1-3.6
is given in Table 2, plus for the recent flooding of the
Red River, providing alternative estimates for many
disparate locations with individual case estimates
differing by factors of up to 10. Being totally
independent events with, 0.00016 < p (Mr) < 0.04,
strictly we cannot combine or “pool” the results. The
naive generalization is that the event probability is
about a one in a few hundred chances of a future flood
exceeding existing barrier heights, prevention capacity
and/or record water levels within the foreseeable
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Table2 Example “new” record flood probability comparing Pearson or EVD, hypergeometric and exponential predictions.

Hypergeometric

Location/flood case Data span (y) Total prior # Pearson or EVD P (n, m, N, M) Exponential
NZ/Tokomairiro R 40 115 0.0086 0.009 0.0023
USA/Big Sandy R 43 47 0.01 0.064 0.001
USA/Potomac R 35 100 0.004 0.032
USA/Rariton R 31 103 0.001 0.032 0.002
USA NC/Little R 87 63 0.018 0.04 0.01
USA AK/Red R 74 116 0.017 0.036 0.018
Italy/Venice 83 5,986 N/A 0.00016 0.029
Netherlands 137 137 N/A 0.014 0.012
USA/Houston TX 23 9 N/A 0.1 0.015
US dam failures 120 575 N/A 0.0001 0.0001
0.01
L NPDP data
-
O Edenville, Michigan 2600 dams .
© Edenville, NPDP 90000 dams
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Fig. 6 Bathtub failure probability for US dams and the recent Edenville failures.
future, while flooding due to dam failures is at least a includes the somewhat controversial arena of
factor of ten less likely, with individual locations prediction wusing statistical reasoning, a subject

showing a predictive uncertainty of a factor of three to
ten.

There is no advantage in endlessly debating or
statistically examining which arbitrary equation is the
“best fit” to the overall data distribution(s) if it is only
relevant to “normal” and non-record conditions. To
determine the future risk, we must distinguish
between the past (statistically, the known prior) and
the future (statistically, the unknown posterior), which

addressed in great detail elsewhere [43].
Rather the efforts should be directed to determining
the

predictions and to gain more predictive insights. This

uncertainty in making rare new record

changes flood prediction from being purely a
statistical exercise to a social decision-making and
risk management activity. We next consider
examples of recent power outages due to new record

flooding.
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5. The Link of Flooding Extent to Power
Outage Restoration

Parts of the power system may be above “flood
level” or not affected by rising water, and some delay
occurs before water depths affect the electric
distribution, circuit connections, substations, facilities
and infrastructure, typically peaking 50-100 hours
after storm onset [3, 47]. Extensive data show the
probability distribution in the USA of exceeding a
large multi-MW(e) outage size, Q' as a fraction of the
probable average of the data set, is similar but not
identical to EVD types (as in Table 1), being a double
exponential with a learning theory constant, k£ [56],

where,
P(QY) =(1- e‘kLQ*{l‘e_kQ*}) (10)

The largest outage events are always extreme
weather related so the infrastructure and property
“degree of damage” should be related to the area or
extent of flooding. For Venice, the data for percentage,
D, of the city flooded [12]
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(proportional) correlation with flood height, Hp, with
R*= 0.939, for Hr> 86 cm, as
D(%) =0.91Hy — 79 (11)

The excellent on-line USGS/NWS system has over
100 gauge records distributed in the region impacted
by Hurricane Florence flooding [50, 51]. Assuming a
random gauge distribution in the most flood prone
regions, an indirect indication of flooding extent is
defined by the fraction or probability of river gauges
showing flooding as given by, P(g) = g/G, where g is
the number of gauges showing flooding out of the
working total, G. The relation between this probability
of flooding, P(g), and power outage non-restoration,
P(NR) for storm Florence is shown in Fig. 7. The
flooding peak occurred after some 70 hours, or 30
hours after the peak in power outages, reaching a 30%
chance before declining. Flooding persisted as
drainage and recovery took longer, and some 70% of
power system restoration occurred after the flooding
peaked at & = hy, presumably as defenses were

progressively restored.

Q Power outages

® Flood gauges

Fig. 7 The observed relation of gauge flooding to power system outages during hurricane Florence.
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Comparable to Venice, one plausible assumption is
that the probability of power non-restoration due to
flooding, P(F’ *), after the peak, h > hy, is conditionally
dependent on and/or directly proportional to the extent
represented by the probability of (river) gauge
know the
probability of power non-restoration, P(NR), is

flooding. Symbolically, we already
exponential in form [3]. The probability of power
outage non-recovery solely due to flooding is, from
Fig. 7 for Hurricane Florence, the best fit to the data
with an R = 0.94,
P(F)psn, = 0.25 e~0022(h=ho) (12)
This implies of course that a maximum of some
25% of the persistent outages are directly attributable
to the difficulties caused by flooding. Lacking other
evidence or alternative, this relation or something
similar is assumed to be generally applicable to any
power system susceptible to flooding. The parameter
values in Eq. (12) are presumably dependent on the
specific factors of flood zone geography, topology,
hydrology, power system design, and unique gauge
locations and distribution. The overall restoration rate
remained largely unaffected [3], being essentially the
same for Hurricane Irma as for Hurricanes Florence
and Harvey because of the dominant access

difficulties caused by flooding.
6. Conclusions

Despite many studies and masses of data, the past
frequency of floods is not the future probability of a
completely new record flood occurring that will
overwhelm our defenses. Therefore, in the present
pragmatic approach, we focus on estimating the
probability of exceeding the previous record(s) or
having a rare “extraordinary” flood. The key point is
that new record floods do not necessarily follow the
statistical distributions of more frequent events that
have been previously adopted for meteorological
forecasting, or extreme value distributions fitted to
past peak precipitation and stream flow data. What we

have learned has national as well as systems

engineering implications.

Present predictive models, systems methods and
statistical techniques used are subject to great
uncertainty because:

* The occurrence of new record rare events is
random, so it is difficult to adequately include in
standard hydrological and meteorological models that
are tuned to a multitude of prior historical data;

* By definition, a record flood is greater than
anything in the past but is rare, random and
unexpected, so it is difficult to demonstrate existing
mitigation and control measures will not be
overwhelmed;

* The impact on vital infrastructure like power
systems is at present barely included in present flood
risk assessments since the focus is on property
damage, cost and protection.

For widely disparate flood types for rivers, tides,
hurricanes and dam failures, we applied differing
approaches to predict new records, compare
traditional empirical fits to a theoretical exponential
based on statistical theory and to random
hypergeometric sampling. Addressing our objective, a
naive generalization is that for naturally occurring
rare new record flooding the statement is: “There is
about a one in a few hundred chance of a future flood
exceeding existing barrier heights, prevention capacity
and/or record water levels within the foreseeable
future, while flooding due to dam failures is at least a
factor of ten less likely, with individual locations
having a predictive uncertainty of a factor of three to
ten”.

Instead of debating or statistically examining which
arbitrary equation is the “best fit” and really only
relevant to “normal” and local conditions, efforts
should be directed to determining the uncertainty in
making such rare new record predictions. We need to
continually examine rare event limits to gain more
predictive insights, since the link exists between
extreme event extent and power outage duration. By

illuminating the uncertainties, the results impact
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disaster resilience, infrastructure vulnerability and

emergency preparedness measures, and assist in

communicating the

realities of extreme flood

prediction.
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