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Abstract: This research refers to the analysis and prediction of rockfall risk, whose objective is to determine the results of the 
validation of the model and application of modeling in the Rocfall Software, in this way to prepare the map of risk areas. Likewise, 
the general problem was identified: What are the results of the analysis and prediction of risks from rockfall in the city of 
Huancavelica? To respond to the problem posed, the following steps were carried out: obtaining field information with Drone 
equipment and using photogrammetric processes the topography of the study area was obtained, identification of unstable areas, 
trajectories, traces of the previously occurred landslides and five geomechanical stations. The specific weight of eight rock samples 
in the laboratory of the National University of Huancavelica was also calculated, which served to obtain the weight of the large-scale 
rock blocks. In addition, the normal and tangential restitution coefficients were calibrated, that is, field trials. Once the data were 
obtained, modeling was carried out by applying the Rocfall software, whose results of ten trajectories were: final distance reached, 
bounce height, kinetic energy and translational speed. With these values, risk maps have been prepared, taking into account the areas 
of housing vulnerability in the city of Huancavelica. Finally, it is proposed to mitigate these risks of rockfall, with dynamic barriers, 
which is important for the security of housing in the analysis sectors. 
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1. Introduction 

The city of Huancavelica is located in the central 

part of Peru, located on the eastern slope of the Andes 

mountain range, on the banks of the Ichu River, 

tributary of the Mantaro River. It has 50,000 

inhabitants, located between high mountains called 

Potocchi mountains, Oropesa mountains, Cruz Pata 

and Aparinacu mountains and has steep hillside relief, 

with varying slopes between 41° and 64°. 

Rock block landslides are generally a threat to 

urban areas located on the slopes of the hills and, 

according to their degree of risk, can cause losses of 

materials, economy and in extreme cases of human 

lives. In addition, there is a lack of interest from local 

authorities in preventing this type of event, with 

technological possibilities, which can be of great help 

                                                           
Corresponding author: Iván Ayala Bizarro, master, 

research field: hydrological and hydraulic modeling to prevent 
flooding and risk analysis. 
 

in response to these types of contingencies. 

The latest events caused by rockfalls in the city of 

Huancavelica, which affected housing in several 

sectors, is thus the interest of conducting this research 

called “Analysis and prediction of risks from rockfall 

in the Huancavelica city”. 

This research focuses on determining the results of 

the analysis and prediction of risks due to rockfall, 

establishing the trajectories for modeling, risk 

mapping and finally proposing an alternative solution 

which will be very useful for the field of study. 

2. Material and Methods 

The rocks that fall can reach the foothills in free fall, 

jumping or rolling [1]. 

Rocfall is useful in determining mitigation measures 

where it is possible to analyze the location of elastic and 

inelastic bars [2]. For the risk analysis of rock shedding 

[3], they used Rocfall software, including a protection 

system, to reduce the impact energy of the rocks. 
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where: 

ݍ

ൌ
ሺ ଶܻ െ ଵܻሻ
ሺܺଶ െ ଵܺሻ

 It is the slope of the line segment
(8)

Eq. (7) is solved for t, using the quadratic equation: 

ݐ ൌ
െb േ √bଶ െ 4ac

2a
 (9)

where: 

a ൌ
1
2

݃  (10)

b ൌ Yܸ଴ െ ݍ Xܸ଴ (11)

c ൌ ଴ܻ ൅ ଵܻ ൅ ሺݍ ଵܺ െ ܺ଴ሻ (12)

At each step through the algorithm, the parabola 

that is formed by the path of the rock is verified with 

each segment of the slope and with each barrier. All 

slope segments and barriers that have a valid 

intersection with the parabola are entered into a list. 

The list is cataloged according to the value of the 

parameter t, to find the correct intersection. 

Once the proper intersection is found, the velocity 

before impact is calculated according to Eqs. (5) and 

(6). These velocities become normal and tangential 

components to the slope according to: 

NܸB ൌ ሺ YܸBሻ cosሺθሻ െ ሺ XܸBሻ sinሺθሻ (13)

TܸB ൌ ሺ YܸBሻsinሺθሻ െ ሺ XܸBሻcosሺθሻ (14)

VNB, VTB: They are the rock velocity components, 

before impact, in the normal and tangential directions, 

respectively, ԕ is the slope of the line segment. 

The impact is calculated using the refund 

coefficients, according to: 

NܸA ൌ ܴN NܸB (15)

TܸA ൌ ܴT TܸB (16)

where: 

RN: It is the normal restitution coefficient ∈ [0, 1] 

RT: It is the tangential restitution coefficient ∈ [0, 

1] 

VNA, VTA: They are the components of rock velocity, 

after impact, in the normal and tangential directions, 

respectively. 

Post-impact speeds are transformed back into 

horizontal and vertical components according to: 

XܸA ൌ ሺ NܸAሻ sinሺθሻ ൅ ሺ TܸAሻ cosሺθሻ (17)

YܸA ൌ ሺ TܸAሻsinሺθሻ െ ሺ NܸAሻcosሺθሻ (18)

where: 

XܸA, YܸA: They are the components of rock velocity, 

after impact, on the horizontal and vertical axes, 

respectively. 

Once the correct intersection and velocities have 

been calculated, the intersection of all data collectors 

with the parabola is corroborated in a manner 

analogous to the verification of the slope segments. 

Any data collector with a parametric value (the value 

of t) less than the value of the actual intersection is 

deducted from the rock’s path. The location, velocity 

and kinetic energy of the rock, at the time the data 

collector passes, are recorded and displayed. 

The speed of the rock is found and compared to 

VMIN. If it is greater than VMIN, the process begins 

again, with the search for the next intersection point. 

If the speed is less than that of VMIN, the rock can no 

longer be considered a particle and is sent to the 

sliding algorithm. 

2.2.3 Sliding Algorithm 

It is used to calculate the slippage of rocks after 

they have left the projectile algorithm. The rocks slide 

in any segment of the slope and barrier. For the 

purpose of the sliding algorithm, the slope or barrier 

segment on which the rock slides consist of a single 

straight-line segment that has slope angle properties 

(ԕ) and friction angle (ɸ). The friction angle acts as a 

constant value or sampled from a random distribution. 

The rock can begin to move anywhere along the 

segment and can have an initial velocity that is 

directed up or down. In the equations only the 

tangential velocity component to the slope is 

considered. 

Once the movement starts, the algorithm used 

depends on whether the initial speed is up or down. 

2.2.4 Sliding Downhill 

If the angle of the slope is greater than the angle of 

friction (ԕ > ɸ), the driving force is greater than the 

resistance force and the rock will slide out of the end 
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point of the descending slope with a higher velocity. 

The speed with which the rock leaves the slope 

segment is calculated by: 

EܸXIT ൌ ට ଴ܸ
ଶ െ (19)   ݇݃ݏ2

where: 

VEXIT: Speed of the rock at the end of the segment; 

V0: Initial speed of the rock, tangential to the 

segment; 

s: Distance from the initial location to the end point 

of the segment; 

g: Acceleration due to gravity (-9.81 m/s2); 

k: ±sin (ԕ) - cos(ԕ)tan(ɸ); 

where: 

ԕ: Segment slope; 

ɸ: Friction angle of the segment; 

±: is + if the initial velocity of the rock is 

descending or zero; 

±: is - if the initial velocity of the rock is ascending. 

If the angle of inclination is less than the angle of 

friction (ԕ < ɸ), the resistance force is greater than  

the driving force and the rock will decrease in speed. 

The rock can stop in the segment, depending on    

the length of the segment and the initial speed of the 

rock. 

Assuming that the segment is infinitely long, a 

stopping distance is calculated. The distance is found 

by adjusting the output speed (VEXIT) to zero in Eq. 

(19) and replacing you have: 

ݏ ൌ ଴ܸ
ଶ

2݃݇
 (20)

Then the distance from the initial location of the 

rock to the end of the segment is calculated. If the stop 

length is greater than the distance at the end of the 

segment, then the rock will slide out of the end of the 

segment. In this case, the output speed is calculated 

using Eq. (19). If the stopping distance is less than the 

distance at the end of the segment, then the rock will 

stagnate in the segment and the simulation ends. The 

location where the rock stops is at a distance of “s” 

from the initial location. 

2.2.5 Uphill Slide 

When sliding uphill, both the force of friction and 

the force of gravity decrease the speed of the particle. 

Assuming that the segment is infinitely long, the 

particle will eventually stop. The braking distance is 

calculated using Eq. (20) and the distance from the 

initial location of the rock to the end of the upward 

slope of the segment is calculated. If the stopping 

distance is greater than the distance at the end of the 

segment, the rock will slide out of the end of the 

segment. In this case, the output speed is calculated 

using Eq. (19). If the stopping distance is less than the 

distance at the end of the segment, the rock stops and 

the simulation ends. 

If the rock slides up and stops, it is inserted into the 

sliding algorithm on a downward slope. If the segment 

is inclined enough to allow sliding (i.e., q > f), the 

rock will slide along the lower end of the segment.  

If the segment is not inclined enough, then the 

location where the rock stopped moving (after sliding 

uphill) is taken as the final location and the simulation 

stops. 

2.3 Geomorphology 

The Aparinacu hill is located on the slope of a 

volcanic mountain and has an average slope of 63.11°, 

where sedimentary rocks emerge—lutitas and andesitt, 

highly eroded. 

The geomorphological structure is formed by 

mountains in sedimentary and volcano-sedimentary 

rocks, with colluvial deposits [4], Fig. 4 shows that 

the study site belongs to the Chunumayo formation. 

2.4 Geological Hazards of the Area 

In the Ccollpayacu sector belonging to the urban 

area of the Huancavelica Ascension district, there is a 

latent danger of detachment of large rock masses for 

families living on the slopes of the Aparinacu hill, if a 

rock fall event occurs, it is highly dangerous for these 

inhabitants and it presents steep slope relief, with 

variable slopes between 41° and 64°. 
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2.5 Rock Path Identification 

The rocks previously detached have a volume of 

1,753 m3 for path A, this block is shown in Fig. 8. 

A technical visit to the study area was carried out to 

determine the possible trajectories of the rocks. Fig. 9 

shows these trajectories. 

2.6 Return Value Calibration 

The fall of insitu rocks, with different weights and 

shapes, was simulated in order to obtain the values of 

restitution coefficients (Rn, Rt), for the study area. 

To simulate a detachment, the following 

considerations were taken into account: 

The contact profile where the calibration was 

performed was obtained from the topographic survey 

mentioned in the previous paragraphs. 

The weight of the rocks to be thrown varies 

according to the Table 2. 

The tests were carried out in the area adjacent to the 

Aparinacu hill, where it was possible to place in a 

place of origin for the launch and identify the final 

paths, take distances, dimensions, weight of the rock 

fragments. 

Fig. 10 shows the test zone, for the calibration of 

the return values. 

The Rocfall software processes all the information 

collected in the field to determine the return 

coefficients, also random values of return coefficients 

were proposed, until obtaining a distance equal to 
 

 
Fig. 8  Rocks detached years ago and settled. 

 
Fig. 9  Defined trajectories for the analysis of possible 
landslides. 
 

Table 2  Weights of the rocks in the different paths. 

Paths Thrown mass (kg) 

1 20.70 

2 10.85 

3 9.10 

4 1.50 

5 1.10 
 

 
Fig. 10  Calibration zone for restitution coefficients. 
 

those observed in the field, said distance will confirm 

that the chosen value is adequate, these are shown in 

Table 3. 

To obtain the normal and tangential restitution 

coefficient values on a soil surface with little vegetation 
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Table 3  Tabulated values of return coefficients. 

Paths Thrown mass (kg) Distance reached (m) Superficie type Rn Rt Friction angle (°)

1 20.7 59.422 Soil with vegetation 0.300 0.774 16.730 

2 10.85 55.985 Soil with vegetation 0.320 0.802 14.145 

3 9.1 56.273 Soil with vegetation 0.320 0.848 10.270 

4 1.5 51.595 Soil with vegetation 0.310 0.765 17.600 

5 1.1 43.558 Soil with vegetation 0.330 0.724 21.885 

Mean 0.32 0.78 16.13 
 

(as is the case with the calibration zone), an arithmetic 

average of the five trajectories was performed, which 

will serve as a reference for this type of surface and its 

subsequent modeling of the study area. In the case of 

surfaces other than this one, the values recommended 

in the “Rocscience restitution coefficient table” and by 

other authors who conducted similar investigations 

will be taken into account. 

Due to the complexity of obtaining the weight of 

the rock under study, samples of the eight insitu 

trajectories of limestone were taken for later testing, 

based on ASTM C 29 (Volumetric or unit weight of 

soils). Their respective specific weights were 

determined whose result is 2,568 g/cm3. This value 

was used to determine the mass of rock fragments 

belonging to the same family. 

2.7 Analysis and Modeling 

In the present study, ten topographic profiles of 

trajectories identified by geomorphological criteria 

and events that occurred previously have been 

modeled. This modeling is done in order to know in 

detail the final location of the blocks, in case of 

eventual rockfall. 

The coordinates for all paths were extracted from 

the Digital Elevation Model generated with the 

AgiSoft PhotoScan Software. 

For the modeling, the values obtained from the 

calibration of the model and the table of Rocscience 

coefficients were used, which are detailed in Table 4. 

2.7.1 Initial Condition 

The initial speeds on both axes were considered 0.1 

m/s (to simulate an action of destabilizing motion of 

the rock at rest). 

The weights of the rocks considered in Table 5,   

are the ones that had the greatest reach and largest, 

since this is an indicator that rocks of these dimensions 

fall. 

The angular velocity is also considered zero, 

because the rock or block starts from rest. 

For the modeling, a quantity of 50 rocks was used, 

the minimum stopping speed and the number of 

horizontal locations for the analysis, will be equal to 

the total distance in meters of each path. 

2.7.2 Rocfall Software Modeling without Dynamic 

Barrier 

The Rocfall software discloses the generally precise 

and similar predictions seen in the field in obtaining 

the following maximum distance, bounce height, 

kinetic energy and speed values. Table 6 shows the 

results of barrier-free modeling. 

According to the modeling carried out in the 

different paths, the rocks have reaches to the urban 

area of the Ccollpayacu Sector, with energies of up to 

3,863.28 kJ. 

2.7.3 Rockfall Software Modeling with Dynamic 

Barrier 

Table 7 shows the summary of the results of the 

barrier modeling, showing the distances, bounce height, 

total kinetic energy and velocities of maximum 

translations. 

The barrier prevents the normal detachment of the 

rocks, in this way the rock stops, but sometimes this 

does not happen, instead of stopping quickly, the 

rocks return uphill and again impact the barrier, 

causing energy to increase; This is the case in the 

barriers of trajectories 2, 5, 6 and 8 with increases of 

5.23%, 0.24%, 11.61% and 1.63% respectively. 
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Table 4  Normal and tangential restitution coefficient values. 

Rn Rt Friction angle (°) Surface type Verificaction 

0.4 0.9 10.11 Outcrop of hard surface rocks, large rocks. 
[11], [12] 

0.4 0.9 6.37 Hard/rigid surface pavement 

0.3 0.8 16.13 Soil with little vegetation Calibrated in the study area. 

0.4 0.9 6.37 Concrete roof [11], [12] 
 

Table 5  Rock volume and weights. 

Paths Volumen (m3) Weight (Tn) 

1 3.062 7.863 

A 1.753 4.501 

2 5.063 13.001 

3 0.234 0.601 

4 0.234 0.601 

5 0.234 0.601 

B 0.096 0.247 

6 0.034 0.088 

7 2.051 5.267 

8 2.051 5.267 
 

Table 6  Results of barrierless modeling. 

Paths 
Maximum  
distance reached (m) 

Maximum Bounce height 
(m) 

Maximum total kinetic 
energy (kJ) 

Maximum translational 
speed (m/s) 

1 317.5 1.26 839.84 13.69 

2 256.5 3.00 3,863.28 22.55 

3 242.5 6.61 260.04 27.36 

4 279.5 2.77 270.31 26.91 

5 249.5 4.73 261.96 26.60 

6 223.5 5.82 36.64 26.98 

7 279.5 6.02 2,427.25 28.16 

8 279.5 4.26 1,314.79 20.86 

A 182.5 1.40 272.71 10.47 

B 135.5 0.49 20.47 11.31 
 

Table 7  Summary of results of barrier modeling. 

Paths 
Maximum distance  
reached (m) 

Maximum bounce  
height (m) 

Maximum total kinetic 
energy (kJ) 

Maximum translational 
speed (m/s) 

1 144.5 0.82 750.49 12.84 

2 146.5 3.10 4,065.41 23.15 

3 169.5 6.17 246.70 25.35 

4 207.5 2.88 269.18 27.33 

5 167.5 4.58 262.59 26.93 

6 112.5 5.85 40.90 28.35 

7 127.5 4.37 2,208.07 26.29 

8 128.5 4.51 1,336.24 20.83 

A 54.5 0.52 269.85 10.28 

B 54.5 0.42 17.95 10.79 
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2.8 Mitigation Measures 

The mitigation measures against rockfall that is 

chosen for this investigation, are the dynamic capacity 

barriers of 5,000 kJ of absorption energy, according to 

the maximum energy found in the barrierless 

modeling that was 3,863.28 kJ, but when model with 

dynamic barrier the maximum energy is 4,065.41 kJ.  

These barriers must be installed in a length of 270 

m, distances between posts of 8 to 12 m and a height 

of 6 m, this measure was taken into account according 

to the bounce height which was simulated. 

Therefore, the threat posed by rock falls to homes 

located at the foot of the Aparinacu hill, must be 

mitigated with the installation of RXE type barriers 

(these adopt cutting-edge technology with 

high-strength steel wire networks) or the like. 

2.8.1 Thematic Maps 

As a result, the map of trajectories with threat, map 

of trajectories with mitigated threat, map of vulnerability, 

map of risk and map with mitigated risk are shown. 

2.8.2 Block Mapping Map 

The map shown in Fig. 11, shows the amount of 

rock blocks digitized with photogrammetry techniques, 

according to the generated histogram, it is observed 

that there is a greater frequency of blocks between 0 

and 10 kg, there is also a large rock (869.31 Tn), in 

the area of rock outcrop. 

In total, 7,566 blocks of rocks were identified, 

between ranges of 0.001 and 338.52 m3 except for 

rocks that could not be identified, being smaller. 

2.8.3 Threat Trajectory Map 

Fig. 12 shows that the red paths show the areas with 

the greatest energy originated during a possible 

detachment, which is why these areas are considered 

to be the greatest threat to homes adjacent to the 

Aparinacu hill. In the case of the paths that stand out 

in blue, they can be considered areas of least threat or 

in their absence.  

2.8.4 Path Map with Mitigated Threat 

Once the modeling was performed, the location of 

the dynamic barrier was identified as shown in Fig. 13 

(green color: areas with mitigated trajectories; red 

color: areas with high threat). 

2.8.5 Vulnerability Map 

These areas are vulnerable to rock falls, due to the 

location of the houses themselves, so it is classified in 
 

 
Fig. 11  Block mapping map. 
 

 
Fig. 12  Threat trajectory map. 

 



Analysis and Prediction of Risks From Rockfall in the Huancavelica City 

 

213

 
Fig. 13  Path map with mitigated threat. 
 

 
Fig. 14  Vulnerability map of the study area. 
 

areas of high vulnerability with 146 homes, average 

with 13 homes and low with 253 homes, which is 

shown in Fig. 14. 

2.8.6 Risk map of the study area 

The very high risk represents the central part of the 

map (red color) which includes free areas and 98 

homes to be affected before a possible detachment, it 

is clarified that to identify the risk the threat (energy) 

and vulnerability (housing) were taken into account. 

The risk scores shown in Fig. 15 include: 0.00 

zones with very low risk (dark green color), 0.25 with 

low risk (light green color), 0.50 with medium risk 

(yellow color), 0.75 with high risk (color orange) and 

finally a score of 1.00 with very high risk. 

2.8.7 Map with Mitigated Risk: Solutions with 

Dynamic Barriers 

Once the thematic map of risks was obtained, it was 

analyzed to install some alternative solution to this 

type of risks and thus be able to mitigate. Dynamic 

barriers are proposed, due to their high degree of 

elastic support and dissipation against kinetic energies 

in motion. 

The areas located below the barrier shown in Fig. 

16 (blue strip), are safer areas in the event of a rockfall 

event.  
 

 
Fig. 15  Risk map of the study area. 
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Fig. 16  Map with mitigated risk. 

3. Conclusions 

The validation of coefficients of restitution for a 

rolling surface of soil with vegetation, became insitu, 

obtaining normal restitution values of 0.32 and 

tangential restitution of 0.78, these results were taken 

as the basis, to accept the values suggested by several 

authors, to other surfaces such as: rocky outcrop, rigid 

pavement and concrete roof. 

The modeling in the Rocfall software allows the 

analysis of rock detachment with static or dynamic 

barrier, as well as an analysis without barriers. When 

modeling without the barrier, the following 

parameters are determined: maximum range distance 

of 317.5 m in path 1 from the location of the rock 

outcrop, maximum rebound height of 6.61 m in path 3, 

maximum energy of 3,863.28 kJ in trajectory 2 and 

translational speed of 28.16 m/s on trajectory 7. With 

these results obtained, the capacity of the barrier to be 

installed (RXE 5000 system) and the height that it will 

have (6.00 m) over a length of 270 m were chosen, in 

order to mitigate the threat of falling rocks. 

When performing the analysis and predicting the 

risk of rockfall, based on the slope of the study area, 

the energies during modeling and the areas of the 

homes located on the slopes of the Aparinacu hill, 

thematic maps are prepared showing the risks without 

the dynamic barrier and then including the dynamic 

barrier in a length of 270 m, resulting in the houses to 

be affected during an eventual rockfall which are: 98 

homes with very high risk level, 92 homes with 

medium risk and 52 homes with risk low. 

It is proposed to install dynamic barriers since they 

are better suited to the topography of the area and 

absorb high energies from rock falls of up to 10,000 

kJ according to Geobrugg [13], unlike the static 

barriers that support a maximum energy of 70 kJ, 

according to García [5], if dynamic barriers are not 

installed, housing must be relocated, due to the high 

risk of the study area. 
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