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Abstract: The system of double equations given by x + y = z + w, y + z = (x - w)2, is studied for obtaining its non-zero distinct 

solutions in integers. 
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1. Introduction 

Systems of indeterminate quadratic equations of the 

form ax + c = u
2
, bx + d = v

2
 where a, b, c, d      

are non-zero distinct constants, have been investigated 

for solutions by several authors [1, 2] and with a few 

possible exceptions, most of them were primarily 

concerned with rational solutions. Even those  

existing works wherein integral solutions have been 

attempted, deal essentially with specific cases only 

and do not exhibit methods of finding integral 

solutions is a general form. In Ref. [3], a general form 

of the integral solutions to the system of equations  

ax + c = u
2
, bx + d = v

2
 where a, b, c, d are   

non-zero distinct constants is presented when the 

product ab is a square free integer whereas the product 

cd may or may not be a square integer. For other 

forms of system of double diophantine equations, one 

may refer to Refs. [4-25]. This communication 

concerns with yet another interesting system of double 

Diophantine equations namely x + y = z + w, y + z = (x 

– w)
2
, for its infinitely many non-zero distinct integer 

solutions.  

2. Method of Analysis 

Consider the system of double equations: 

x + y = z + w             (1) 

y + z = (x – w)
2
            (2) 
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Four different methods of solving Eqs. (1) and (2) 

are illustrated below. 

2.1 Method 1 

The introduction of the transformations: 

x = u + v, w = u – v         (3) 

in Eqs. (1) and (2) leads to z – y = 2v, z + y = 4v
2
 from 

which, on solving, we get:  

z = 2v
2
 + v, y = 2v

2 
– v         (4) 

Note that Eqs. (3) and (4) satisfy Eqs. (1) and (2). 

Properties: 

 Each of the following expressions represents a 

perfect square: 

4xw – (z + y) 

4xw + (z – y)
2
 

 z
2
 - y

2
 is a Cubical integer 

 Each of the following expressions represents a 

Bi-quadratic integer: 

 4zy + z + y 

 4(zy + z + y) – 3(x – w)
2
 

2.2 Method 2 

Assume 

z = u + v, y = u – v, w = s      (5) 

Substituting Eq. (5) in Eqs. (1) and (2) and 

simplifying, note that: 

u = 2v
2
                (6) 

The substitution of Eq. (6) in Eq. (5) leads to: 

z =2v
2 

+ v, y = 2v
2
 – v, w = s    (7) 

Also, from Eq. (1), 
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x = 2v + s               (8) 

Observe that Eqs. (7) and (8) satisfy Eqs. (1) and 

(2) 

Properties: 

  zywx 46
4
  is a nasty number 

   2222 wxyz   is a bi-quadratic integer 

 
  1

2
2

44





wx

yz
 is a quintic integer 

(2v
2
 + v, 2v

2
 – v, 8v

2
) is the diophantine triple with 

the property D(v
2
) as the product of any two members 

of the set added with v
2
 is a perfect square. 

(2v
2
 + v, 2v

2
 – v, 8v

2
 + 3) is the special dio-triple 

with the property D(v
2
 + 1) as the product of any two 

members of the set added with the same members and 

increased by v
2
 + 1 is a perfect square. 

2.3 Method 3 

Assume w is chosen arbitrarily and take:  

w = s (≠ 0)              (9) 

Eliminating x between Eqs. (1) and (2), we have 

 z
2
 – (2y + 1)z + y

2
 - y = 0. 

Treating the above equation as a quadratic in z and 

solving for z, one gets: 

 1812
2

1
 yyz           (10) 

The square-root on the R.H.S of Eq. (10) is 

eliminated when: 

 
2

1


nn
y              (11) 

and 

    1
2

1
,21

2

1
 nnnnz      (12) 

Substituting Eqs. (11), (12) and (9) in Eq. (1), we 

have: 










ns

ns
yzsx

1

 

Thus, there are two sets of solutions to Eqs. (1) and 

(2) represented as below: 

 

Set: 1  

x = s + n + 1, y = t3,n, z = t3,n+1, w = s 

Set: 2 

x = s – n, y = t3,n, z = t3, n-1, w = s 

where t3,a is the triangular number of rank a. 

2.4 Method 4 

Consider the transformations: 

x = p + q, y = p - q, z = p + r, w = p – r  (13) 

where p, q, r are non-zero distinct integers. 

Note that Eq. (1) is automatically satisfied. The 

substitution of Eq. (13) in Eq. (2) leads to 

 q
2
 + (2r + 1)q + r

2
 – r – 2p = 0. 

The above equation is quadratic in q and solving for 

q, we have: 

 prrq 81812
2

1
       (14) 

The square root on the R.H.S of Eq. (14) is 

removed by choosing suitably the values of r and p 

and the corresponding values of q are obtained from 

Eq. (14). Substituting these values of p, q, r in Eq. 

(13), the values of x, y, z, w satisfying Eqs. (1) and (2) 

are obtained. A few examples are given below: 

Example: 1 

Take  

   
2

12
,

2

1 2 ksk
p

ss
r







 

   ksskssq 223
2

1
,2

2

1 22 
 

In view of Eq. (13), the corresponding 2 sets of 

solutions to Eqs. (1) and (2) are as follows: 

Set: 1 

  ksskskx 212
2

1 22 
 

  kssksky 212
2

1 22 
 

    112
2

1 2  sskskz
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    112
2

1 2  sskskw
 

 

Set: 2 

  ksskskx 22312
2

1 22 
 

  kssksky 22312
2

1 22 
 

    112
2

1 2  sskskz
 

    112
2

1 2  sskskw
 

Example: 2 

Consider: 

r = 
 

 
(s

2
 + s + 2), p = 

 

 
(k

2 
+ (2s + 1)k - 2) 

   423
2

1
,22

2

1 22  ksskssq
 

Employing Eq. (13), the corresponding 2 sets of 

solutions to Eqs. (1) and (2) are as follows: 

Set: 3 

  22212
2

1 22  ksskskx
 

  22212
2

1 22  kssksky
 

  2212
2

1 22  sskskz
 

  2212
2

1 22  sskskw
 

Set: 4 

  423212
2

1 22  ksskskx
 

  423212
2

1 22  kssksky
 

  2212
2

1 22  sskskz
 

  2212
2

1 22  sskskw  

3. Conclusions 

In this paper, an attempt has been made to obtain 

many integer solutions to the pair of equations  

x + y = z + w, y + z = (x – w)
2
. The authors wish that 

the researchers of diophantine equations may be 

motivated in solving other choices of double 

diophantine equations. 
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