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Abstract: The effect of gossypol, linolenic acid and cottonseed oil on the activity and stability of acidic (Aspergillus niger) and 
neutral (Bacillus amyloliquefaciens) proteinases was studied. Fatty acids and gossypol negatively affect the activity and stability of 
enzymes. The inhibitory effect of fatty acids and gossypol is most pronounced in the case of neutral proteinases. This also decreases 
the affinity of the enzyme to the substrate. The heat treatment of cottonseed kernels has a positive effect on enzymatic processes and 
facilitates the process of oil extraction. 
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1. Introduction 

Cotton seed (cotton) is one of the most important 

oilseeds in Uzbekistan. The main product of 

cottonseed processing is refined cottonseed oil. A 

by-product of the oil extraction process is a cottonseed 

meal that has a relatively high protein content of 

35-40%, which makes it an attractive and promising 

source of vegetable proteins. Nevertheless, the presence 

of anti-nutrients is one of the main disadvantages in 

using it as human food. Consequently, it is generally 

used as a feed for animals. 

Recently, enzymes have become widely used in the 

processing of oilseeds. Enzymes are used both at the 

stage of oilseed processing [1, 2], and at the stage of 

refining and modification of oils [3-6].  

Removing oil with enzymes from the aquatic 

environment is an alternative technology for 

extracting oil from oil seeds. In this case, the enzymes 

used must hydrolyze the high-molecular compounds 

that impede the extraction process. After fermentation, 
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the oil must be easily separated from the aqueous 

medium [7]. 

This method was used to extract oil from soybean 

seeds [8, 9], sunflower seeds [10], rice bran [11], corn 

[12, 13], and rape [14].  

The water-fermentation oil extraction that has 

appeared in the oil of the fat industry has several 

advantages over the traditional method [7]. This 

excludes the process of hydration and extraction of 

oils using organic solvents [15, 16].  

Carbohydrase, in the composition with other 

enzymes, was used to treat oil seeds during expel 

pressing. Enzyme treatment contributed to an increase 

in oil yield to 90-92% [17]. Without fermentation, the 

yield was 72-78%. At the same time, the capacity of 

equipment increased by 51% and oil flow by 84%.  

The possibility of using enzymes in the extraction 

of oil from soybean and sunflower seeds was studied 

by Dominguez with coauthors [18]. It was shown that 

the particle size, moisture content, enzyme 

concentration and fermentation time play an important 

role in the oil recovery process. Reducing the particle 

size from 2 mm to 1 mm contributed to increasing in 

oil yield by 35% for soybean and 50% for sunflower. 
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During the enzyme treatment, the required moisture 

content was 50% for soybean and 20-30% for 

sunflower. Higher enzyme concentration of up to 1 

g/100g for soybean and 2 g/100g for sunflower, 

increased the yield of the oil. For both seeds, the 

optimal fermentation time was 6 h. 

Enzymatic treatment of oil-bearing crops has a 

positive effect on the extraction of oils. It was shown 

that the use of carbohydrases allows increasing the 

yield of oil and reducing the time of extraction of oils 

[19]. For this, oil seeds were moistened to 30%, 0.12% 

enzyme was added and incubated for 12 hours at 

50 °C. Then, the raw material moisture was reduced to 

4% and the oil was is extracted with hexane. In this 

case, the use of enzyme with mixed activities 

(proteases, amylases) gives the best results as 

compared to enzymes when used alone. 

When fermenting oilseeds, the choice of enzymes 

for the fermentation of raw materials and the 

conditions for the process is important. Depending on 

the composition of the structural components of oil 

seeds, enzymes with the desired catalytic properties 

should be chosen. 

It should also be noted that big amount of various 

compounds proteins, lipids, polysaccharides, 

phosphatides, colorants and their complexes in the 

grains of oil-bearing crops can affect the activity and 

stability of the enzymes used. Therefore, it is 

necessary to study the activity and stability of 

enzymes in conditions close to natural. 

The multicomponent nature of essential substrates 

leads to the fact that the enzymes used, lose their 

activity due to interaction with various components of 

the processed raw materials. Such compounds include 

gossypol, fatty acids, phenolic substances, 

surface-active substances, products forming during the 

heat treatment of raw materials, etc. 

The aim of this work is to study the influence of 

cotton seed components on the catalytic properties of 

enzymes and on the extraction of oil. 

2. Materials and Methods 

We used sour proteinase from the fungus 

Aspergillus niger (Prolive PAC 30 L 

“Enzymbioprodukt” LLC, Russia), neutral bacterial 

proteinase from bacteria—Bacillus amyloliquefaciens 

(Neutraza, “Novozymes”, Denmark), α-amylase 

(Amilek 3T, “Expo Tech” Ltd., Russia) and β-amylase 

(Diazim X4, Expo Tech Ltd., Russia). 

Gossypol was provided by the Institute of Bioorganic 

Chemistry, Academy of Sciences of Uzbekistan. 

2.1 Measurement of Proteolytic Activity 

The proteolytic activity was estimated by using the 

modified method of Anson, using albumin and 

globulin isolated from defatted cottonseed kernels as a 

substrate [20]. 

2.2 Measurement of Enzymes Thermal Stability 

Thermostability of the enzyme was studied in the 

incubation medium heated to 50 °C in 0.1 M universal 

buffer (at the required pH of the medium). In some 

cases, the incubation medium contained 8 mg/mL of 

cottonseed oil, linolenic acid and 1 mg/mL of gossypol. 

After certain time of incubation, 0.5 mL samples was 

taken and the enzyme activity was measured. 

The enzyme activity was measured at 30 °C, in a 

medium containing 1% albumin solution with activity 

0.027-0.030 U/mL. 

2.3 Enzymatic Processing of Cottonseed Kernels 

Totally, 250 g of cottonseed kernels was sprayed 

with 5 mL of an enzymatic solution consisting of a 

mixture of α-amylase, β-amylase, and acidic or neutral 

proteinase (0.1% by weight of cottonseed kernels). 

After mixing, the kernel was kept in a dry-air 

thermostat at 50 °C for 1 hour. Then the temperature 

of the mass raised to 110 °C and held for 20-30 

minutes, after that the oil was extracted by pressing. 

Oil content of the cake was determined on a Soxhlet 

device [21]. 
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Table 2  The formation of reducing sugars* at enzymatic hydrolysis of carbohydrates of cottonseed kernels. 

Enzymes 
Cottonseed kernels 

Without thermal processing With thermal processing 

α-amylase 22.6 ± 1.0 12.8 ± 0.5 

α-amylase and β-amylase 34.6 ± 1.3 31.0 ± 1.3 

* in mg of sugar per 1 g of cottonseed kernels.  
 

Table 3  The effect of fermentation on the oil extraction from cottonseed kernels. 

Parameter Without thermal processing With thermal processing 

Oil content in the seeds, % 19.4 ± 0.3 19.4 ± 0.3 

Pressed oil yield, % 12.6 ± 0.5 13.5 ± 0.5 

Extracted oil yield, % 5.4 ± 0.2 4.5 ± 0.2 
 

From the data presented, it is clear that the 

formation of reducing sugars during fermentation of 

the cottonseed kernels with α-amylase was 22.6 ± 1.0 

mg/g. With the joint use of α-amylase and β-amylase, 

the rate of carbohydrates hydrolysis was more 

intensive and the formation of reducing sugars was 

34.6 ± 1.3 mg/g. 

The formation of reducing sugars during 

fermentation of the heat-treated cottonseed kernels 

was 12.8 ± 0.5 mg/g for α-amylase and 31.0 ± 1.3 

mg/g at combined use of α- and β-amylases. 

Thus, the moisture-heat treatment of the cottonseed 

kernels has a positive effect on enzymatic processes, 

increasing the degree of protein substances hydrolysis. 

In addition, the hydrolysis of carbohydrates with a 

slight decrease in the rate of hydrolysis also takes 

place. 

Enzymatic treatment of the cottonseed kernels with 

amylases and proteinases before frying has a positive 

effect on the process of oil extraction. In Table 3 the 

effect of the enzymatic treatment of the cottonseed 

kernels on the yield of the resulting pre-press 

cottonseed oil is shown. 

From the data of Table 3, it can be seen that the 

yield of pressed oil during fermentation of the 

cottonseed kernels grows up to 13.5 ± 0.5%. The yield 

of press oil without fermentation was 12.6 ± 0.5%. 

Due to this, the yield of extracted oil decreases. 

4. Conclusion 

When processing cotton seeds, the proteolytic 

enzymes can undergo inactivation, due to the 

inhibitory effect of lipids, fatty acids and gossypol. At 

the same time, the acid proteinase from the fungus 

Aspergillus niger was more resistant to fatty acids, as 

compared with neutral proteinase from bacterium 

Bacillus amyloliquefaciens. 

Moisture-heat treatment of the cotton seed kernels 

positively affects the enzymatic processes, increasing 

the degree of hydrolysis of proteinaceous substances 

and also affects the prepress extraction of oil, 

increasing its yield. These data can be used to improve 

the process of oil extraction from oil seeds. 
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