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the machine can work 24/7, charge whenever needed, 

and then return to work.  

The method used is simulation of all machinery tasks 

during one year on an average Swedish dairy farm. A 

battery powered autonomous tractor system is 

simulated as well as a conventional diesel powered, 

manually controlled tractor. The two systems are then 

compared when it comes to total cost of operations 

(TCO), energy usage and greenhouse gas emissions. 

The simulated farm is an organic dairy farm of 200 ha 

with five crops in the crop rotation cycle (winter wheat, 

barley, green fodder and two kinds of ley). Only 

in-field machine operations are included in the 

simulations, except for transportation of inputs 

(manure, fertilizer, seeds etc.) and outputs (grain, 

silage bales etc.) to and from the farm. The simulation 

is a linear, continuous and dynamic model that  

utilizes Excels evolutionary solver algorithm for 

optimization of the lowest TCO on a farm by varying 

the power, the number of tractors and the battery size of 

the tractors (Fig. 1). For the simulation of 

diesel-tractor(s), only the engine power and number of 

tractors are varied.  

(1) Conditions: The crop rotations, all the 

operations and the data needed to model these, as well 

as the different crop requirements [9]. 

(2) Capacity: Modeling of how wide or large the 

implements can be given a certain power on the 

tractor and then in turn their operational capacity, 

cargo capacity, costs, ask completion time and energy 

consumption they have.  

(3) Timeliness: The fictional timeliness costs are 

costs that occur when the machines have too low 

capacity and an operation is being delayed. This 

segment also includes modeling of dependencies 

between different operations [10]. 

(4) Battery: The battery is modeled with charge 

cycles, service life, capacity, costs, as well as energy 

consumption and carbon dioxide emissions for the 

manufacture of the battery. Swedish electricity mix is 

used as a basis for the carbon dioxide emissions 

calculations [11, 12]. 

(5) Charger: Modeling of charger and electricity 

consumption with power, greenhouse gases and costs 

[13]. Swedish electricity mix is used as a basis for the 

carbon dioxide emissions calculations.  

(6) Tractor: Modeling of driver and operator, tractor 

costs, control system, electric driveline, weight and 

transport distance. Costs were deducted for cabin and 

diesel engine and added for electric driveline and 

autonomous control system (assumed to a fixed cost 

of 11,300 USD, no running cost included) [14, 15]. 

 

 
Fig. 1  Graphic representation of the different parts in the simulation model.  
The model boundaries are input in “Farm & Restrictions”. The information is then used by the “Components” part that is dependent 
on the “Variables”. Each part of “Components” has an attached cost, as well as other features like time and energy consumption and 
environmental impacts. 
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(7) Field implements: Modeling of implements 

pulled or powered by the tractor. Maximum power 

requirements, energy use, harvesting, maximum width, 

capacity and costs are calculated. Costs are based on 

list prices for implements in Sweden [16]. 

(8) Transportation: Modeling parameters for 

transport and the collection, loading, unloading and 

distribution of goods. Max power requirements, 

energy use, load capacity and costs are calculated. 

Costs are based on list prices for implements in 

Sweden [17].  

The simulation can be expressed as a mathematical 

function (Eq. (1)), where the TCO is the sum of all 

component costs for one year’s machine activities. 

The component costs are dependent on the variables 

vehicle power, the number of vehicles and the battery 

size. The optimization then consists of varying P, N 

and E to find the lowest TCO. 

ܱܥܶ ൌ ∑ ,ܰ,ሺܲ׋ ሻ஼௢௠௣௢௡௘௡௧௦ܧ          (1) 

where, C is the component cost (total for one year); P 

is the vehicle power; N is the number of vehicles; E is 

the available energy in the battery, dependent on 

battery size. 

In the model, some relevant restrictions and 

boundaries were implemented. The power for the 

tractor could be 0-500 kW and the battery size could 

be 0-3,000 kWh and maximum 40% of the total 

vehicle weight, which was limited to 75 kg/kW to get 

pulling characteristics like conventional tractors. The 

number of tractors could be 0-100 and the working 

width of the implements were limited to the largest 

models currently on the market. As a part of the 

timeliness factor the probability for acceptable 

weather was included to model poor weather 

conditions [8].  

Based on the result from the simulation cost 

calculations, sensitivity analysis and a limited life 

cycle analysis (LCA) were made and compared to the 

same optimization system using a diesel driven tractor. 

The LCA focused on the difference in fuel systems, 

was limited in scope and had system boundaries that 

included the production and use of diesel and 

electricity as fuels for the tractors, and the 

manufacturing of the battery cells (including materials 

and energy use). All other factors were assumed to be 

identical or very similar between the diesel and 

electrical tractor. 

3. Results and Discussion 

The results show that the optimum setup for an 

autonomous battery powered machine on the 

simulated farm was two machines, each at 36 kW 

motor power and a battery capacity of 113 kWh, as 

shown in Table 1. When a conventional 

diesel-powered tractor with a driver was modeled the 

economic optimum was one tractor of 160 kW. The 

vehicle weight was estimated to be 75 kg/kW rated 

power for both types of tractors, which means that the 

autonomous electric machine would be four times 

lighter [8].  

When comparing the two machine systems the total 

cost for the two autonomous battery powered 

machines was 15% lower. The size of the tractors are 

similar to the one in Ref. [6] and the diesel tractors 

machine hours per year is close to the Swedish 

average which is 600 h/year [14].  

The different costs for the modeled machines had a 

distribution as shown in Fig. 2. The single largest cost 
 

Table 1  Comparison of specifications between two autonomous controlled and battery powered machines and one diesel 
powered and driver-controlled machine managing all the farms tasks for one year. 

Alternative 
Number of 
machines 

Power per 
machine (kW)

Machine hours per 
machine (h/year) 

Energy reservoir 
(kWh) 

Work hours 
per day (h) 

Total cost 
(USD/year)

Diesel powered with driver 1 160 545 2,940 10 74,200 
Autonomous battery 
powered  

2 36 995 113 24 63,300 
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impact on the TCO while the degree of automation 

(here either fully autonomous or fully manual) had a 

notable impact. Charger power had a notable negative 

impact when decreased beyond certain amounts but 

had a low impact when increased. Distance to charger 

followed the same trend, both effectively having a 

threshold for efficient operation after which further 

increases had diminishing returns. 

Continued research is needed to verify the 

theoretical simulation by building a test platform 

where knowledge can be gathered about the problems 

and opportunities in practical work—both in the field 

of battery-electric operation and autonomous driving 

for agricultural machines. 
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