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Abstract: Gravity and electromagnetism are two sides of the same coin, which is the clue of this unification. Gravity and 
electromagnetism are represented by two mathematical structures, symmetric and antisymmetric respectively. Einstein gravitational 
field equation is the symmetric mathematical structure. Electrodynamics Lagrangian is three parts, for electromagnetic field, Dirac 
field and interaction term. The definition of canonical energy momentum tensor was used for each term in Electrodynamics 
Lagrangian to construct the antisymmetric mathematical structure; symmetric and antisymmetric gravitational field equations are two 
sides of the same Lagrangian.  
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1. Gravity and Electromagnetism Are Two 
Sides of the Same Coin 

Gravitational objects have spin and angular 

momentum; spin and angular momentum of 

gravitational objects are related to basic quantum 

properties of elementary particles. The angular 

momentum for the sun is given by
2 50=M 10  ergs.ssun sun sunJ R  ; for solar system 

it is 2 52=M 10  ergs.ssolsys solsys solsysJ R  . In the 

case of a galaxy the angular momentum is given by
2

gal gal galJ  = M  R  where 

45 2 47 2 18
gal galM = 10 g; R = 10  cm ; 2 10 HZ

 
and the value of angular momentum is

74
gal 10  ergs.s  J  . Similarly for cluster of galaxies, 

the angular momentum is given by 
2 110

Clust Clust Clust=M 10  J R  h  in Hubble scale 

and for the universe 12010univJ  h. Spin density (σ = 

spin/volume) is the same for a wide range; for an 

electron, the spin density is given by
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 [1]. Not 

only this, but also magnetic fields seem to be 

everywhere that we can look in the universe [2]. 

Magnetic fields are observed to be of the order of 1013 

G in neutron stars, 103 G in solar type stars. Magnetic 

fields of order a few μG also have been detected in 

radio galaxies [3]. Magnetic fields are associated with 

all gravitational objects; gravitational objects are 

magnetic dipoles; electromagnetism not only tied to 

charged particles, but the planets, stars, galaxies and 

clusters. 

2. Symmetric and Antisymmetric 
Mathematical Structures  

Unification of gravity and electromagnetism has 

been pursued by many scientists, like Weyl, 

Eddington, Einstein, Infeld, Born and Schrodinger. 
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Weyl initiated this unification; Eddington considered 

connection as the central concept then decomposed its 
Ricci tensor to symmetric Ricci tensor ( R ) which 

represents gravity and antisymmetric Ricci tensor 

( R ) represents electromagnetism.  

Infeld and Born followed the path of Eddington 

then derived the Lagrangian 

ࣦீோ ൌ  ටെdet൫gఓ௩  ൅ ௩ఙ൯ܨ    െ ඥെg , they considered 

the asymmetric metric ( )g g F    , its 

symmetric term g  represents gravity and 

antisymmetric term ( F ) represents 

electromagnetism, g is the determinant of the 

symmetric metric tensor g [4]. Schrodinger 

generalized Eddington Lagrangian to a new form 

containing the cosmological constant ( )  [5]; 

despite the failure of these previous attempts, they in 

its entirety refer to something cannot be neglected that 

gravity and electromagnetism should be represented 

by two mathematical structures. 

3. Curvature Tensor 

Riemann tensor in terms of Christoffel’s symbols is 

defined by 

, ,  R      
               (1) 

Riemann Christoffel tensor is of rank four, 

contravariant in δ and covariant in μ, ν, and σ, and 

also 

ܴ  ఓ௩ఙ
ఋ  ൌ 0 

             
(2) 

Is the necessary condition for the validity of the 

special theory of Relativity and for the absence of 

permanent gravitational field or the necessary and 

sufficient condition that the space time is flat [6]. 
Lowering the last index in the Riemann Christoffel 

tensor with the symmetric metric tensor, the lowered 

tensor  R R g 


  is symmetric under 

interchanging of the first and last pair of indices and 

antisymmetric in μ, ε and in ν, σ. Symmetric and 

antisymmetric Ricci tensors can be written as follow 

, ,  R R     
       


           (3) 

, , R R  
              (4) 

Symmetric and antisymmetric Ricci tensors give us 

the opportunity to have symmetric and antisymmetric 

gravitational field equations. 

4. General Theory of Relativity 

General relativity is the modern theory of gravity; 

General theory of relativity relates gravitational field 

to the curvature of space time. Symmetric stress 

energy tensor Tμν is the source of gravitational field in 

general theory of relativity.  

In the presence of permanent gravitational field, the 

symmetric gravitational field equation is 

4

1 8

2
Rg gR T

G

c   


       (5) 

R is the Ricci scalar and G is the gravitational 

constant.  

Einstein-Hilbert action for gravity is given by 

ܵ ൌ ׬  ൌ  ܸܴ݀ܩࣦ ׬ 
ܿ4

ܩߨ16
ሺܴ െ 2Λሻඥെg ݀ସ߯ , where,

4dV xgd  is invariant volume element and 

gravity Lagrangian is defined by 

                               ࣦீோ  ൌ  
௖ర

ଵ଺గீ
ሺܴ െ 2Λሻ         (6) 

Gravity Lagrangian is a combination of Ricci scalar 

and cosmological constant. 

5. Electrodynamics 

Electrodynamics Lagrangian is given by  

       ࣦா஽  ൌ  െ
ଵ

ସ
௩ఙܨ௩ఙܨ  ൅  ഥ ൫݅ߛ௩ܦ௩ – ݉൯

             
(7) 

where, F
is the electromagnetic field strength 

tensor, D  is the gauge contravariant derivative,   

is matter field, 
0

†    is their adjoint, 1i  
and   is the four Dirac matrices with (ν = 0, 1 … 3). 

The electromagnetic field strength tensor ( F ) is 
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given by 

1 2 3

1 3 2

2 3 1

3 2 1

0

0
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E B B
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E B B



   
  
 
  

 

and 

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

E E E

E B B
F

E B B

E B B



 
   
  
   

  

and they lowered index counterpart. 

The first term of Electrodynamics Lagrangian for 

the electromagnetic field is given by 

                               ࣦୣ.୫.  ൌ  െ
ଵ

ସ
 ௩ఙ           (8)ܨ௩ఙܨ

Canonical energy momentum tensor for 

electromagnetic field Lagrangian is 

௩ఙߠ
    ௘.௠.  ൌ  

డࣦ೐.೘.

డሺడೡ஺ഋሻ
߲ఙܣఓ  െ  g௩ఙࣦ௘.௠.   (9)

 

Using the identity
( )

4
( A )

F F
F




 




 
, we find 

. 1

4
e m F F g F F 

             (10) 

Eq. (10) is not antisymmetric due to the asymmetric 

tensor ( )F F 
   [7]; for this, suppose the 

asymmetric tensor is the sum of symmetric, 

antisymmetric tensor and can be written as follow. 

F F F F   
            (11) 

The divergence tensor is arbitrary antisymmetric 

tensor in their first two indices (    ), it is 

constructed from electromagnetic field strength tensor 

( F ) and electromagnetic vector potential ( A ). 

Eq. (11) in terms of this definition can be rewritten 

as 

( ) ( )F F F A F F F A   
           (12)  

Employing the Maxwell equation, we obtain 

j jF F A F F A 
               (13) 

The antisymmetric stress energy tensor for 

electromagnetic field can be written in the form: 

. 1

4
e mT j A g F F

             (14) 

If we multiplied this equation by
4

8 G

c

 
 
 

, we find 

଼గீ

௖ర ௩ܶఙ
   ௘.௠. ൌ  

଼గீ

௖ర ݆௩ܣఓ  െ   
଼஠G

ୡర g୴஢ࣦ௘.௠.  (15) 

The second term in electrodynamics Lagrangian for 

Dirac field is given by 

                          ࣦD୧୰ୟୡ  ൌ  ഥ ൫݅ߛ௩߲௩ – ݉൯
  
      (16) 

The canonical energy momentum tensor is defined 

by 

௩ఙߠ
     ஽௜௥௔௖  ൌ  

߲ࣦ஽௜௥௔௖

߲ ቀ߲௩ ቁ
   ൅  

߲ࣦ஽௜௥௔௖

߲ ቀ߲௩ ାቁ
  ା  

െ g௩ఙࣦ஽௜௥௔௖                                           
 ሺ17ሻ 

θ௩ఙ
     ஽௜௥௔௖  ൌ  തതത݅γ௩  

 
െ g௩ఙ ഥ ൫݅ߛఒ߲ఒ െ ݉൯       

ሺ18ሻ 
The canonical energy momentum tensor that has 

been presented in this equation is not antisymmetric 

due to the symmetric term (തതത݅γ௩   ). For this, the 

antisymmetric stress energy tensor can be written as 

the canonical energy momentum tensor minus this 

symmetric term as follow: 

௩ܶఙ
     ஽௜௥௔௖  ൌ   θ௩ఙ

     ஽௜௥௔௖  െ  തതത݅γ௩        (19) 

௩ܶఙ
     ஽௜௥௔௖  ൌ  െg௩ఙ ࣦ஽௜௥௔௖

       (20) 

Multiplying Eq. (20) by
4

8 G

c

 
 
 

, we have 

଼గீ

௖ర ௩ܶఙ
   ஽௜௥௔௖  ൌ   െ

଼గீ

௖ర g௩ఙഥ ൫݅ߛఒ߲ఒ െ ݉൯
     (21) 

Third term is the interaction Lagrangian and given 
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by  

ࣦ௜௡௧  ൌ  െ݁തതതߛ௩  ௏          (22)ܣ

The canonical energy momentum tensor is given by 

௩ఙߠ  
     ௜௡௧  ൌ  െg௩ఙࣦ௜௡௧

           
(23) 

And antisymmetric stress energy tensor is 

௩ܶఙ
     ௜௡௧  ൌ  െg௩ఙࣦ௜௡௧              (24) 

Antisymmetric stress energy tensor for interaction 

Lagrangian is the same canonical energy momentum 

tensor; multiplying the previous equation by
4

8 G

c

 
 
 

, 

we find  
଼గீ

௖ర ௩ܶఙ
     ௜௡௧  ൌ  െ

଼గீ

௖ర  g௩ఙࣦ௜௡௧     (25) 

If we added Eqs. (15) and (21) to Eq. (25), we have 

଼గீ

௖ర ൣ ௩ܶఙ
   ௘.௠ ൅  ௩ܶఙ

   ௜௡௧ ൅  ௩ܶఙ
   ஽௜௥௔௖൧ ൌ  

଼గீ

௖ర ݆௩ܣఓ  െ  
଼గீ

௖ర g௩ఙඋࣦ௘.௠.  ൅  ࣦ஽௜௥௔௖ ൅  ࣦ௜௡௧ඏ         (26) 

଼గீ

௖ర ൣ ௩ܶఙ
   ௘.௠ ൅  ௩ܶఙ

   ௜௡௧ ൅  ௩ܶఙ
   ஽௜௥௔௖൧ ൌ  

଼గீ

௖ర ݆௩ܣఓ  ൅ ቂ
ଶగீ

௖ర ఋఒቃܨఋఒܨ g௩ఙ െ
଼గீ

௖ర g௩ఙ ቂഥ ൫݅ߛఒ߲ఒ– ݉൯ െ ݁തതതߛఒ   ఒቃܣ

(27) 

If gauge contravariant derivative (ܦఒ ൌ ߲ఒ  ൅  ఒ) is used in the previous equation, we findܣ݁݅

଼గீ

௖ర ൣ ௩ܶఙ
     ௘.௠ ൅  ௩ܶఙ

     ௜௡௧ ൅   ௩ܶఙ
    ஽௜௥௔௖൧ ൌ  

଼గீ

௖ర ݆௩ܣఓ  ൅ ቂ
ଶగீ

௖ర ఋఒቃܨఋఒܨ g௩ఙ  െ  
ଵ

ଶ
g௩ఙ ቂ

ଵ଺గீ

௖ర ഥ ൫݅ߛఒܦఒ – ݉൯ቃ    (28) 

4

8 1

2

G
T g R

c
R g   


                                 (29) 

Antisymmetric gravitational field equation is gauge invariant and antisymmetric stress energy tensor can be 

written in the form. 

4 4 4

8 8 16

c c c
T g Rg

G
R

G G     
   

                        
(30) 

Ricci scalar is proportional to the sum of Dirac and interaction Lagrangians as follow. 

 4
( )

16
  

G
R i D

c
m


                                   (31) 

Cosmological constant is a construction from electromagnetic field strength tensor and given by:  

4

2
F

G
F

c





                                     (32) 

Antisymmeric Ricci tensor is given by: 

 4

8 G
R j A

c  


                                     (33) 

Antisymmetric Ricci tensor is the antisymmetric term of Eq. (13) multiplied by
4

8 G

c

 
 
 

. Substituting by Eqs. 

(31) and (32) into Eq. (6), we have 

ࣦீோ  ൌ  
௖ర

ଵ଺గீ
ቂ

ଵ଺గீ

௖ర ഥ ൫݅ߛఒܦఒ– ݉൯ቃ െ
௖ర

଼గீ
ቂ

ଶగீ

௖ర ఋఒቃܨఋఒܨ ൌ  ࣦ஽௜௥௔௖  ൅  ࣦ௜௡௧  ൅  ࣦ௘.௠. ൌ  ࣦா஽    (34) 

Gravity Lagrangian equal to electrodynamics Lagrangian, but in terms of the secondset of indices. 
Electrodynamics Lagrangian and its parts can be written in terms of one of two sets of indices, first set is  
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 , ,   and second set is , ,   . If we multiplied Eq. (13) by
4

8 G

c

 
 
 

, we find 

4

8 G
F F R R

c


   


                                   (35) 

ൌ ݒߤܴ  
ܩߨ8

ܿ4 ൣെ݆ߤܣݒ  െ ఙܨߤ௩ܨ 
 ൧                                  (36)ߤ

The symmetric Ricci tensor is the symmetric term of Eq. (13) multiplied by
4

8 G

c

 
 
 

; it has two parts, first term 

is a construction of current density and electromagnetic vector potential, and second term is the gravitational field 

tensor. If we substituted by Eq. (36) into Eq. (3), we find 

            (37) 
Substituting by Eq. (33) into Eq. (4), we find  

, , 4

8 G
j A

c
 
     


                                (38) 

This tensor takes the form of curl of vector as follow: 

4

8
log log

G
j A g g

c      


      
                       

(39) 

Eq. (37) can be divided into two equations as follow. 

                         (40) 

, , 4

8 G
j A

c


 


   


                               (41)  

Eq. (41) can be rewritten as: 

4

8
log

G
j A g

c


    


                               (42) 

4

8
log

G
g j A

c  


   


                               (43) 

   1 1

2 2
g g g g g g g  

                               (44) 

0g g g g g g  
                                  (45) 

1 1 1 1

2 2 2 2
g g g g g g g    

                                     (46) 
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Substitute by Eq. (46) into Eq. (43), we find 

4

1 1

2

8
og

2
l

G
g j A

c
g g g 

        


                        (47) 

Equating the first term on the left hand side of the equation with the first term on the right hand side of the 

equation, we find 

log
1

2
g g

                                       (48) 

1
log

2
g g

                                     (49) 

 In Eq. (47) if we equate the second term by the second term, we find  

4

8 1

2
g

G
j gA

c


   


                                (50) 

Equating Eq. (50) with Eq. (39), we find 

1
log log

2
g g g g

                                  (51) 

Eq. (40) can be rewritten in the form 

                       (52)
 

   1

2

1

2
g g g g g g g 

          


                      (53) 

 1

2
g g g g

      
                              (54) 

   1 1 1 1

2 2 2 2
g g g g g g g g g g g    

                            (55) 

   1 1

22
g g g g g g g   

           
                  

  

1

4
g g g g g g g g g g    

                      
 

1

4
g g g g g g g g g g g g     

                   
 



Unification of Gravity and Electromagnetism 

 

21

g g g g g g g g g g g g     
                     

 

1

4
g g g g g g g g g g g g     

                      

1

4
g g g g g g g g g     

                    
 

1

4
g g g g g g g g g     

                     

1

4
g g g g g g  

                 

1

4
g g g g g g  

                 

1

4
g g g g  

                
 

1

4
g g g  

                                          (56) 

Using Eq. (49), we find 

1
2 log 2 log

4
g g g  

        
             

1

4
g

   
        

(57) 

And substituting by this equation into Eq. (52), we have 

         (58) 
Now, let’s construct the antisymmetric metric tensor; magnetic field in empty space is given by 

                 (59) 

1 2 3      ሬሬറܭ , ൌ ሺܭଵ, ,ଶܭ ଷ ሻܭ
 

are the wave frequency and wave vector. In general orthogonal 

curvilinear coordinates a vector ܣറ defined as follow: 

                                (60) 

Let’s suppose that (B01, B02, B03) is the unit vector then equate Eq. (59) with Eq. (60), we find
1 1 1 4 2 2 2 4

1
( (

2
) ),xi k x k xi xhe eh     and 3 3 3 4

3
( )xi k xh e  . Using these three coefficients to construct the 

antisymmetric metric tensor ( g ); this tensor is in the same form of electromagnetic field strength tensor F
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and with the same signs. 
3 3 3 41 1 1 4 2 2 2 4

3 3 3 41 1 1 4 2 2 2 4

3 3 3 42 2 2 4 1 1 1 4

3 3 3 4 2 2 2

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) (

1 2 3

1 3 2

2 3 1

3 2 1

0 0

0 0

0 0

0

i k x xi k x x i k x x

i k x xi k x x i k x x

i k x xi x i k x x

i k x x i

k x

k x

h h h

h h h

h h h

h

e e e

e e e
g

e e e

e eh h

 

 

  

 

 

 

 

 

 
      
   
   


  4 1 1 1 4) ( ) 0x i k x xe 

 
 
 
 
 
 

    (61) 

 

And now, we will return to the cosmological 

constant; the cosmological constant splits up into two 

parts where 2 22 2F F E B
    

2 2
4 4

4 4
E B

c c

G G 
         (62) 

The first term of cosmological constant can be 

written as: 

1 14

8 G

c

               (63) 

2
1

1 . .

2

B E
E

A
              (64) 

First term is proportional to density of vacuum 
electric energy; density of vacuum electric energy is 

equivalent to binding energy per nucleon
. .B E

A
 
 
 

; 

2. .B E m
c

A A


  where

(A Z)mp n Nm Zm M     , A is atomic mass 

number, Z is atomic number, NM  is a nucleus mass, 

pm  is proton mass and m n  is neutron mass [8]; 

first term is a function of atomic mass number (A) and 
it is a continuous quantity. The second term of 
cosmological constant can be written as: 

2 24

8 G

c

               (65) 

2
2

1 . .

2

B E
B

A
            (66)

 

Second term is proportional to density of vacuum 

magnetic energy; density of vacuum magnetic energy 

equals to the absolute value of binding energy per 

nucleon; second term is represented by a curve and it 

is the image of the first term by reflection on the 

A-axis in A -plane; all expected values for the 

cosmological constant () lie on the area between the 

two curves. Symmetric gravitational field equation in 

empty space is 

 

1

2
R Rg g              (67)

 

1

2
R gR 

   
 

        (68) 

Equating Eq. (36) with Eq. (68), we find 

 
(69) 

Antisymmetric gravitational field equation in empty 

space by analogy to symmetric gravitational field 

equation is 

 

1

2
R Rg g              (70) 

1

2
R gR 

    
 

         (71) 

Equating Eq. (71) with Eq. (33), we have 

4

8 1

2

G
j A R g

c   
     

 
   (72) 

Eqs. (69) and (72) are two states of energy; 

gravitational object transits between them and changes 

its state from fermion to boson or vice versa; this 

transition followed by emitting or absorbing 

gravitational field; if we added Eq. (69) into Eq. (72) 

we have 

2

8 1 1

2 2

G
F F R g R g

c 


  
           

   
(73) 
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If we equate Eq. (58) by Eq. (73), the first term of 

Eq. (58) has not comparable one in Eq. (73) and 

equals to zero.
 1

0
4

g
                (74) 

Equating second term of Eq. (58) by the first term 

of Eq. (73), we find 

log
1 1

2 2
g g R




         (75)
 

Equating third term of Eq. (58) by second term of 

Eq. (73), we find 

log
1 1

2 2
g g R


        (76) 

Equating Eq. (75) by Eq. (76), we find 

log
2

og
1 1

2
lgg g g 




       (77) 

                  (78) 

6. Conclusion 

General relativity is very successful theory; 

differential geometry has been extended by new 

tensors and operators. These tensors are g , g , 

g , g ; the four dimensional gradient operators 

became six operators, these operators are  ,  ,  ,

 ,  ,  . 

This study introduced new relations in differential 

geometry and created new differential geometry 

analysis undertaken. 
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