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Abstract: In order to carry out a study on the synergistic relationship of variables which could affect the electrical properties of CPC, 
a universal and anisotropic platform of simulation, containing three simulation modules is explored. The simulation modules are: 
FEM (finite element modeling), PTM (percolation threshold modeling) and ENM (electrical networks modeling).  
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1. Introduction 

Due to easy fabrication, tunable properties and a 

broad range of applications, the research area of CPCs 

(conductive polymer composites), consisting of 

insulating polymers and conductive fillers (CB 

(carbon black), CFs (carbon fibers), graphene, etc.) 

has increasingly gained more attention in the last 

decade [1]. CPCs with good flexibility exhibit a 

variety of sensing responses when subjected to 

external strain. The sensing mechanism is mainly 

based on the destruction and reconstruction of 

conductive networks. Therefore a variation of 

conductivity can be linked to the amount of exposure 

by external stimuli. 

Recently, CPCs with good flexibility have been 

considered as satisfactory candidates to develop 

flexible strain sensors. Utilizing the advantages of the 

polymer matrices, CPCs can show excellent stretching 

ability and quick response to external stress [2-4]. 

Elastomers, such as vinylidene   
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fluoride-hexafluoropropylene copolymer [5], PDMS 

(polydimethylsiloxane) [6], SR (silicone rubber) [7-9] 

or TPU (thermoplastic polyurethane) [10-12] are 

typically used as polymer matrices. However, the 

application of CPCs based strain sensors still faces 

severe challenges, e.g., unstable signal output and 

insufficient reversibility. In particular, due to different 

demands for the strain sensing behavior in different 

applications, CPCs with tunable strain response 

patterns are urgently needed. 

2. Background 

Besides the experimental investigation, simulations 

can provide an effective way of understanding the 

dynamic mechanism [13-15]. A surplus of theoretical 

studies carried out by simulations has already been 

conducted in order to investigate the relationship 

between the geometry of fillers and electrical 

properties [16-18]. However, most of these studies 

assumed an idealized isotropic orientation of the 

fillers, represented by using just one parameter for the 

spatial orientation [19, 20]. If the geometrical factors 

are considered, as for example the aspect ratios of the 

fillers and the filler inclination, the influence on the 
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electrical properties can be studied thoroughly. 

Besides the experimental investigation, simulation 

can provide an effective way of understanding the 

dynamic mechanism. Many excellent theoretical 

studies via simulations have already been conducted 

[1-3] in order to investigate the relationship between 

the geometry of fillers and electrical properties. 

However, most of these studies assumed an idealized 

isotropic orientation of the fillers, and focused on only 

one variable of geometrical distribution. Considering 

the geometrical factors, i.e. fillers’ aspect ratios and 

filler inclination might influence the electrical 

properties [21, 22]. Therefore, a systematic theoretical 

study on the influence of the geometrical distributions 

and filler dimensionality, especially for the 

3-dimensional fillers, would still be scientifically 

necessary.  

3. Model 

For the simulation and modeling, the influence of 

different parameters on the electrical conductivity, 

particularly on the electrical percolation filler fraction 

was discussed in relation to experimental data [23]. In 

order to carry out a study on the synergistic 

relationship of these variables, a universal and 

anisotropic platform of simulation, containing three 

simulation modules had been explored [24]. The 

simulation modules contain FEM (finite element 

modelling), PTM (percolation threshold modeling) 

and ENM (electrical networks modelling). After 

constantly updating, the simulation platform performs 

the following features: 

 Anisotropy (orientation); 

 High degree of flexibility; 

 High degree of automation; 

 High efficiency: Under the same magnitude of 

mesh and computing environment, our platform needs 

only 1/3 the time of other similar simulation program; 

 High accuracy: All parameters and results can be 

accurate up to 12 decimal places; 

 Very low error rate (less than 0.01%). 

The mesh strategy is the key of simulation. For 

simulation with different settings and conditions, it is 

necessary to bring different mesh strategy when facing 

diverse models. In the platform of simulating CPCs, 

the mesh strategy is always optimized and updated. 

4. Experimental 

The ordinate axis shows the number of elements, 

and the abscissa shows the ratio of current mesh 

quality and the smallest mesh quality [25]. For the 3D 

model, it could also be approximated as the reciprocal 

of the ratio of the minimum element volume to the 

current element volume. This distribution is a practical 

tool for judging the quality of the mesh and the 

authenticity of the simulation results. A curve that 

satisfies the normal distribution represents a suitable 

meshing. 

Finite element modelling (FEM) in 3 dimensions 

was used in order to examine how the electrical 

conductivity of polymeric fiber composites is 

influenced by the orientation, aspect ratio, filler 

fraction and material of the fibers, with the primarily 

intention to confirm the reliability of equations 10-12. 

The FEM modelling strategy presented in this paper 

was an improved version of the model previously 

presented in Nilsson et al. [21, 24]. An overview of 

the simulation process is presented in Fig. 1. 

The typical number of mesh elements for a 

composite comprising 30 fiber sections is about 

250,000 tetrahedrals. Figs. 2 and 3 show typical 

meshes of a small model composite.   

After constantly updating and improving in the past 

years, the simulation platform performs with high 

degree of flexibility, high degree of automation, high 

efficiency and high accuracy. Fig. 4 shows the mesh 

quality control of the simulation. Within the platform, 

all the factors could be controlled as either constant or 

variable, and a deeper understanding of the 

relationship between different factors is comprehended. 

An experimental consideration with multiple levels of 

variables is  carried out, and  the synergistic relationship 
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Fig. 1  Process of the simulation set in the platform.  
 

 
(a)                               (b) 

Fig. 2   (a) Mesh strategy for the simulation with 1~150 fillers, with the top and bot-voltage blocks a coefficient of geometry 
scale 0.3. The coefficient of the space and the fillers is 1.0. The mesh operation over the geometry is set to be free tetrahedral. 
(b) Mesh of the conductive filler, with the top voltage block and the space set to be hidden. 
 

 
(a)                               (b) 

Fig. 3  (a) Mesh strategy for the simulation with > 150 fillers, with the top and bot-voltage blocks a coefficient of geometry 
scale 2.0. The coefficient of the space and the fillers is 10.0. The mesh operation over the geometry is set to be free tetrahedral. 
(b) Mesh of the conductive filler, with the top voltage block and the space set to be hidden. 
 



 

Fig. 4  Mesh
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has the highest percolation threshold of 10.2%. With a 

bimodal model of a certain ratio between the both kinds 

of fillers (1:1), the percolation threshold could be 

adjusted to an intermediate value 8.4%. With more data 

from the simulation platform, a preparation method 

with a fixed percolation threshold will be determined. 

5. Conclusions 

A significant research aiming at the difficulties of 

simulating CPCs is carried out as the first phase of the 

simulation. The platform will be systematically 

updated for a better performance and efficiency, 

especially the PTM (percolation threshold method) 

module and the “high conductive layer” feature. 

Through the whole working phase, all the factors with 

high research value will be controlled as either 

constant or variable, and a deeper understanding of the 

relationship between different factors will be 

comprehended. An experimental consideration with 

multiple levels of variables will be carried out, and the 

synergistic relationship will be systematically studied. 

Combined with experimental data, the trend of change 

in each variable under different environmental settings 

will be clearly displayed by the simulation platform. 
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