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Abstract: This paper presents the development of a PNS (Pedestrian Navigation System), which utilizes accelerometer, gyroscope and 
magnetometer data to enable accurate positioning. Therefore, the sensor basics as well as the mathematics regarding reference frames 
and coordinate transformations are introduced initially. Particular focus is given to quaternions, since they provide a 
performance-effective means to execute rotations. In great detail the two distinct approaches for a PNS are introduced, i.e. INS (inertial 
navigation systems) and PDR (pedestrian dead reckoning). For each, a comparison of state-of-the-art techniques is presented. Special 
attention is paid to orientation estimation and stance phase detection. Our system combines the most promising techniques and 
describes improvements, whose usefulness becomes obvious in our experiments. We have applied our PNS in five different test 
scenarios. For the most complex rectangular-shaped use case, we achieve on average error of 1.66% with regard to the total travelled 
distance, which is superior to other recent PNS utilizing comparable sensors. 
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1. Introduction  

Nowadays much research activities are devoted to 
provide hybrid localization. A related topic, which is a 
first step towards this goal, is seamless positioning. 
Here, multiple individual localization systems are 
distributed spatially, for instance in different rooms for 
indoor applications. The objective is to enable 
localization by selecting the positioning system 
available on the very spot without informing the user 
that a transition to another system might have taken 
place. However, these areas could be non-overlapping, 
thus generating black sectors, where positioning is 
impossible. One alternative to bridge these spots is by 
using dead reckoning systems, as explained below. 

Loosely speaking, navigation systems can be 
classified into position fixing and dead reckoning 
techniques. For the former, the object to be localized is 
evaluated with regard to known features in the 
environment. As an example, the position of a GPS 
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receiver can be determined with the help of satellites, 
whose positions are known. However, this category 
also includes most indoor positioning systems. For 
instance, a Wireless Local Area Network receiver in a 
smartphone could be localized by measuring the signal 
strength regarding multiple access points. Another 
example is an ultra-wideband radar system consisting 
of multiple base stations, which determine the distance 
to a mobile entity, respectively, by measuring the time 
of flight [1]. Another famous approach is FMCW 
(frequency modulated continuous wave) radar, where 
the distance is computed by applying frequency chirps 
and utilizing time difference of arrival [2]. In contrast, 
dead reckoning systems do not require any knowledge 
about the environment. Moreover, they do not depend 
on any remote hardware. Instead, they employ user 
attached sensors, to determine the position in respect to 
a starting point. Usually, accelerometers, gyroscopes 
and magnetometers are utilized. 

Within this paper, the steps necessary to build up a 
PNS are presented, where only the aforementioned 
sensors are used, which are all available in modern 
hand-held devices. A particular focus is on the basics 
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and on related work. State-of-the art approaches for 

INS and PDR are analysed and auspicious candidates 

are selected. It turns out that orientation estimation and 

stance phase detection significantly influence the 

results; thus strong techniques for both are elaborated.  

The rest of this paper is organized as follows. 

Section 2 introduces the theoretical foundations, e.g. 

sensor basics, reference frames, and coordinate 

transformations. Especially, quaternions are 

introduced, which are a performance effective means 

for executing rotations. Related work is presented in 

Section 3. In particular, the two main techniques are 

described and comparisons of approaches from 

literature are given. As already stated, accurate 

orientation is a key factor. Multiple variants are 

presented in Section 4. On this basis, our PNS is 

introduced in Section 5. Manifold experiments are 

listed in Section 6. Here, our system is evaluated in 

regard to other state-of-the art approaches. Moreover, 

unresolved issues are identified. The last Section 7 

concludes the paper. 

2. Basics 

This section presents terminology and essential 

basics. After presenting the sensors used, reference 

frames and some mathematical principles regarding 

coordinate system transformations are introduced. 

Finally, the human gait cycle is illustrated. 

2.1 Sensors 

Although today’s mobile end devices cover 

manifold sensors, only accelerometers, gyroscopes and 

magnetometers are employed in this paper and are 

introduced below. Alternative sensors are not 

considered. The reasons for this are twofold. On the 

one hand, these sensors provide raw data, whereas 

other sensors being software entities, which utilize 

these data to perform some form of preprocessing. On 

the other hand, sensors like barometers do only provide 

very coarse information for positioning [3]. 

Accelerometers measure the acceleration of a rigid 

body within an inertial navigation system, based on 

Newton’s second law of motion, i.e. 

m= ⋅F a  (1) 

Fig. 1a shows the principle. The mass is kept in 

balance in such a way that an equilibrium of forces 

arises. Due to any additional external acceleration, the 

mass is relocated, to finally create another equilibrium. 

With the help of the measurement scale, the value of 

the external acceleration can be determined. A 

realisation of this principle as MEMS (micro electro 

mechanical system) is shown in Fig. 1b. Here, the 

values of the capacitances 1C and 2C  are changed 

due to the relocation of the mass as a result of external 

acceleration. It is worth mentioning again, that the 

values of accelerometers are referred to an inertial 

navigation system. Hence, gravity is considered as 

acceleration by the sensors. To take this into account, 

the term linear acceleration denotes acceleration where 

the gravity component is already removed. 

Gyroscopes determine the angular velocity. 

Therefore, the Coriolis effect is applied, which states 

that a mass m with velocity v experiences a force 

CF  in a reference frame rotating atω : 

2 ( )C m= − ⋅ ×F ω v  (2) 

The principle is shown in Fig. 2a, where a single 

mass m is stimulated to vibrate along a drive axis. If 

in this context the gyroscope is rotated, then a 

secondary vibration is generated along the 

perpendicular sense axis due to the Coriolis force. The 

angular velocity can then be derived by measuring this 

secondary rotation [6]. One realisation for MEMS is 

based on a comb drive which is set into vibration (see  
 

  
(a) Principle [4] (b) MEMS realization [5] 

Fig. 1  Accelerometer.  
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(a) Principle [6] (b) MEMS realization [5] 

Fig. 2  Gyroscope.  
 

 

 

 

(a) Principle (b) Hall voltage 

Fig. 3  Magnetometer [8].  
 

Fig. 2b). The rotating axis points into the paper. Due to 

motion, the distance between the plates of the 

capacitor, formed between the green detector and the 

red mass, is changed. This enables to determine the 

angular velocity. 

Magnetometers measure the local magnetic field. 

Therefore, the Hall effect is utilized, as shown in Fig. 3. 

Due to the magnetic flux densityB , moving electrons, 

which constitute the current I  within the conductor, 

are shifted towards the upper and lower plate, thus 

generating a Hall voltage HU . 

For positioning three mutually perpendicular sensors 

are necessary, respectively. In the following, the term 

accelerometer, gyroscope or magnetometer will always 

denote such an entity, respectively. Moreover, as an 

IMU (inertial measurement unit) we specify an entity 

containing accelerometer and gyroscope. 

In Ref. [6] a thorough analysis of different errors 

sources, which affect the performance of MEMS 

sensors is given. The main error sources are: 

� Constant bias; 

� Thermo-mechanical white noise; 

� Flicker noise; 

� Calibration errors. 

The constant bias is the average output value, when 

no input quantity is present. It is the offset part from the 

true value. The sensor output is perturbed by white 

noise, which fluctuates at a much higher frequency 

than the sampling rate of the sensors. Within the 

electronic components of the sensors, Flicker noise 

arises, which influences the bias at low frequencies. 

Moreover, calibration errors are caused by errors in the 

scale factors. Their influences are only visible if an 

input is present. According to Ref. [6], constant bias 

and white noise are the most important sources for 

accelerometer and gyroscope MEMS. 

2.2 Reference Frames 

Within this paper all reference frames are 

orthogonal, right-handed coordinate frames. The local 

navigation frame and the body frame are the two main 

frames being applied. They are introduced below. For 

the local navigation frame N, the origin is the 

stand-point of the user. The three orthogonal axes are 

aligned in the directions north, east and down as shown 

in Fig. 4a. In contrast, the body frame B is aligned with 

the body in consideration. The origin is one point of the 

body, e.g. the centre of mass. The x-axis (also known 

as roll-axis) points forward, the y-axis (also known as 

pitch-axis) points to the right, and the z-axis (also 

known as yaw-axis) points downward (see Fig. 4b). 

For our considerations, the origins between both 

frames are always the same. 

2.3 Coordinate Transformation 

In this subsection the relationships for coordinate 

transformations are summarized. Proves can be found 

in Refs. [4, 9]. By means of Av  a vector v  is 

denoted within the coordinate frame A . The 

representation of this vector in another coordinate 

frame B , i.e.B v , can be accomplished with the help 

of a coordinate transformation. 

B B A
A= ⋅v vC  

(3) 

The transformation matrix B
AC  is the DCM 

(direction cosine matrix), where the element in the i -th 

row ( i =1,2,3) and j -th column ( j =1,2,3) is the 

cosine of the angle between the i-axis of the A  frame  
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(a) Local navigation frame 

 
(b) Body frame 

Fig. 4  Reference frames [9].  
 

and the j-axis of the B  frame [9]: 
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31 32 33
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A

c c c
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 
 =  
 
 

C  

 

(4) 

The inverse transformation can be realized by 

A A B
B= ⋅v vC  

(5) 

where [9] 

( )A B T
B A=C C  

(6) 

Hence, for the transformation between body frame 

B  and local navigation frame N  the following 

equation applies 

N N B
B= ⋅v vC  

(7) 

In addition to the DCM, there are other methods for 

coordinate transformation, above all Euler angles, the 

rotation vector and quaternions. Since the first two 

suffer from ambiguities [9], i.e. the gimbal locks, 

quaternions are frequently applied for dead reckoning. 

Compared to DCM, quaternions consist of only 4 

elements instead of 9, reducing computational 

complexity. However, the interpretation of quaternions 

is more difficult. 

Quaternions are hyper complex numbers with four 

components [9] 

( , , , )Tw x y z=q  
(8) 

where w , x , y  and z  are all real numbers. It can 

also be written with the primitive elementsi , j , k  

w x y z= + + +q i j k  
(9) 

or as a sum of the scalar w  and a vector ( , , )Tx y z : 

( , , )Tw x y z= +q  
(10) 

To distinguish quaternions from vectors, we employ 

Gothic characters. Addition of quaternions is 

performed for each element. Multiplication ⊗  of two 

quaternions is based on the definition of the 

multiplication for the primitive elements, i.e. 

1⊗ = ⊗ = ⊗ = −
⊗ = − ⊗ =
⊗ = − ⊗ =
⊗ = − ⊗ =

i i j j k k

i j j i k

j k k j i

k i i k j

 

 

 

(11) 

For arbitrary quaternions 0 0 0 0w x y z= + + +0q i j k  

and 1 1 1 1w x y z= + + +1q i j k , the multiplication is 

defined by applying usual distributive laws and 

considering Eq. (11), i.e. [12]. 

0 0 0 0

1 1 1 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

( )

( )

( )

( )

( )

( )

w x y z

w x y z

w w x x y y z z

w x x w y z z y

w y x z y w z x

w z x y y x z w

⊗ = + + +
⊗ + + +

= − − −
+ + + −
+ − + +
+ + − +

0 1q q i j k

i j k

i

j

k

 

 

 

 

(12) 

Some further definitions follow Ref. [12]. Let
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w x y z= + + +q i j k  be an arbitrary quaternion. Its 

conjugate ∗⋅  is defined as  

w x y z∗ = − − −q i j k  
(13) 

and the norm ⋅‖‖ as 

2 2 2 2w x y z= + + +q‖‖  
(14) 

A quaternion q  with 1=q‖‖  is called a unit 

quaternion, denoted bŷq . The product of two unit 

quaternions is again a unit quaternion [11]. 

Quaternions with first component zero are 

characterized as pure quaternions. As an example, a 

vector 3∈v R  can be represented as a pure 

quaternion pv by 

1 2 3 1 2 3(0, ) (0, , , ) ; ( , , )T T Tv v v v v v= = =v vpv  
(15) 

Unit quaternions can be used to perform coordinate 

transformations. Let the operator ̂( )L ⋅q  be defined as 

ˆ ˆ( ) ˆL ∗= ⊗ ⊗p pq v q v q  
(16) 

where q̂  is a unit quaternion, then Eq. (16) 

characterizes a rotation of the vectorv , represented as 

pure quaternion pv [11]. Specifically, let ˆ
N B←q  

denote the coordinate transformation from the body 

frame to the local navigation frame. Then a vector Bv  

in the body frame, represented as pure quaternionB
pv , 

is transformed into the local navigation frame by [12] 

ˆ ˆN B
N B N B

∗
← ←= ⊗ ⊗p pv q v q  

(17) 

The inverse transformation is accomplished by [11] 

ˆ ˆ

ˆ ˆ

B N
B N B N

N
N B N B

∗

∗
← ←

← ←

= ⊗ ⊗
= ⊗ ⊗

p

p

v q v q

q v q
 

(18) 

Conversions between DCM, Euler angels, rotation 

matrix and quaternions are listed in Ref. [9]. 

2.4 Gait-Cycle 

The human gait cycle is shown in Fig. 5. It consists 

of two alternating phases. In contrast to the swing 

phase, the stance phase specifies the interval in which 

the foot in consideration is touching the ground. The 

stance phase lasts about 60% of a full gait cycle [10]. 

According to Fig. 6 this full cycle is also denoted as a 

stride. In turn, a stride consists of two single steps. 

3. Approaches for PNS 

The generic term Dead Reckoning denotes 

techniques that calculate position updates from 

measuring the change in position. Within this section 

two fundamental approaches are introduced, i.e. the 

INS (inertial navigation system) and the PDR 

(pedestrian dead reckoning). 

3.1 INS 

INS can be classified into stable platform systems 

and strapdown systems. For stable platform systems all 

the sensors are mounted on a platform which is always 

aligned to the local navigation frame by using gimbals 

and motors. Due to their mechanical complexity, they 

are not utilized in any mobile device. Therefore in the 

following, only strapdown INS are considered. For 

these systems, all sensors are directly mounted on a 

rigid body as shown in Fig. 7. In contrast to stable 

platform INS, the sensor data are provided within the 

body frame and need to be converted to the local 

navigation frame. A flowchart for determining the 

position with the help of a strapdown system is shown 

in Fig. 8 and explained below. 
Let ( , , )B B B T

x y zw w w represent the angular 

velocity measured by the gyroscope. According to Eq. 
(15), the associated pure quaternion B

pw  is 

(0, , , )B B B B T
x y zw w w=pw  

(19) 

Since quaternions provide a linear means for 

manipulating rotations, the updated quaternion 

representing the coordinate transformation between 

body frame and local navigation frame ˆ
N B←q  can 

approximately be written as Ref. [13] 

0
ˆ ∆N B N B N B t← ← ←≈ + ⋅ɺq q q  (20) 

Where [13, 14] 

0
ˆ1

2
B

N B N B← ←= ⋅ ⊗ɺ
pq q w  

(21) 
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Fig. 5  Human gait cycle [10]. 
 

 
Fig. 6  Step and stride [10]. 
 

 
Fig. 7  Strapdown INS.  
 

 
Fig. 8  Flowchart of the strapdown INS.  
 

After this incremental update, the length will not be 

unity any more. Therefore, normalization is performed 

ˆ N B
N B

N B

←
←

←

= q
q

q‖ ‖

 
(22) 

After accomplishing the orientation computation 

with Eqs. (20)-(22), the accelerometer measurements 
Ba  are transformed in the local navigation frame 

according to Eq. (17) 

ˆ ˆN B
N B N B

∗
← ←= ⊗ ⊗p pa q a q  

(23) 

where B
pa  is the pure quaternion form ofBa . 

Afterwards, gravity is removed. This linear 

acceleration N
lina  is then double integrated to 

determine the new positionN r , where the former 
position N

0r  and velocity N
0v  are utilized: 

0

2
0 0

∆

1
∆ (∆ )

2

N N N
lin

N N N N
lin

t

t t

= + ⋅

= + ⋅ + ⋅ ⋅

v v a

r r v a
 

 

(24) 

Accelerometer and gyroscope sensor errors directly 

influence the position result. These errors accumulate 

over time [6]. In Ref. [17] a square trajectory is set as a 

test scenario applying this simple INS process. The 

results reported in Ref. [17] show huge errors, which 

are mainly caused by following factors. First, due to the 

gyroscope errors, the turning angle at each corner is 

larger than 90 degrees. Second, the estimated length of 

each straight path is greater than the real length. This is 

due to accelerometer errors caused by accelerometer 

bias in both the stance and swing phase [17]. It is 

reported that the estimated total travelled distance is ca. 

83.5m, compared to 40m real path. Below, methods for 

alleviating these errors are presented. 

3.1.1 Zero velocity UPdaTe (ZUPT) 

In addition to the errors just stated, there is another 

source. Due to the noise from the gyroscopes, the 

computed orientation deviates from the correct 

orientation. In this way, parts of the gravity component 

are taking into account as linear acceleration. Due to 

the errors accumulating over time, huge errors for the 

position arise [15, 16]. As can be seen from Fig. 5, the 

velocity of the foot should be zero, when it touches the 

ground, i.e. in the stance phase. With the help of ZUPT, 

the velocity is set to zero at this point of time, 

alleviating some of the errors. For best results, the IMU 

should be mounted on the foot. Below the conditions 

Stance,1C  to Stance,3C  for the identification of the 

stance phase are described according to Ref. [17]: 

Magnitude of acceleration 

During the stance phase, the magnitude of the 

acceleration B ka  for each sample k  is supposed to 

be the gravity, i.e. 
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, ,
Stance,1

true, if | |

false, otherwise

B
min acc k max accTH TH

C
 < <

= 


a
 

(25) 

where 

2 2 2
, , ,| |B B B B

k x k y k z ka a a= + +a  
(26) 

Since gravity is contained within the acceleration 

,

,

: 9.3

: 10.3

min acc

max acc

m
TH

s
m

TH
s

=

=
 

(27) 

Variance of acceleration 

Moreover, at stance the variance of the acceleration 

shall be close to zero. Instead of the variance, which is 

unknown, in Ref. [17] the second sample moment 
about the sample mean 2

,
B

k accM  is used to form the 

following condition 

2
2
, ,

Stance,2

true, if  

false, otherwise
acc

B
k acc max M

M TH
C

 <= 


 

(28) 

The sample moment about the sample mean 2,
B

k accM  

is determined as follows [18] 

( )2
2
,

1
| | | |

2 1

k n
B B B

k acc k k
k n

M
n

+

−

= −
+ ∑ a a  

(29) 

where | |B
ka  is the sample mean for the 2 1n+

sampling points, i.e. 

1
| | | |

2 1

k n
B B

k k
k nn

+

−

=
+ ∑a a  

(30) 

In Ref. [17] parameter n  is set to 15. The threshold 

is defined as 

2

2

4,
: 1.5

accmax M

m
TH

s
=  

(31) 

Eq. (29) shall represent the variance for the sample. 

Since the mean is not known, we recommend using the 

sample variance instead, since the expected value of 

the sampling variance equals the variance of the 

underlying population [18]. For the sample variance 

the denominator in Eq. (28) must be changed to 2n. 

Magnitude of angular velocity 
The magnitude of the angular velocity B

kw  is 

supposed to be zero at stance, i.e. 

,
Stance,3

true if | |

false otherwise

B
k max gyrTH

C
 <

= 


w
 

(32) 

where 

2 2 2
, , ,| |B B B B

k x k y k z kw w w= + +w  
(33) 

The threshold is set to 

, : rad
s1.5max gyrTH =  

(34) 

ZUPT requires the IMU to be attached on the foot. 

However, in the medical and commercial field, the 

sensors are often mounted on the ankle, where the 

velocity at stance is not equal to zero, since the leg is 

not at rest. Hence, the ZUPT stance detection cannot be 

working properly. To deal with this, an extension is 

presented in Section 5, which is called non-ZUPT. 

3.1.2 Summary of INS 

Table 1 is a comparison of different INS techniques. 

As can be seen, ZUPT can improve the performance 

significantly. Moreover, an INS based on the 

non-ZUPT approach is listed. Since ZUPT and 

non-ZUPT are enhancing the accuracy, we employ 

both in our PNS. 
 

Table 1  Evaluation of INS algorithms.  

 [17] [17] [32] 

Technique Basic ZUPT-aided Non-ZUPT-aided 

Accuracy Low (108%) 
High (2.9%) 
(5.0% in 
Ref. [21]) 

High (3.6%) 

Robustness High Medium Low 

Performance Low Medium Medium 
 

3.2 PDR 

Another approach for a PNS is PDR. Here, for each 

step the process consists of three stages: (a) step 

detection, (b) calculation of the step length and (c) 

estimation of the orientation. Continuously repeating 

these steps allows determining the walking trajectory. 

In contrast to double integration, step recognition only 
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generates two-dimensional position results. Below, 

approaches for step length estimation are summarized. 

In Ref. [19] the vertical acceleration is used to 

estimate the step length estSL  according to 

4
, ,est vert max vert minSL K a a= ⋅ −  

(35) 

in which K represents a calibration value for 

pedestrians and ,vert maxa  and ,vert mina  are the 

maximum and minimum values of the acceleration in 

one step. 

Another algorithm based on a biomechanical model 

is described in Refs. [20, 21]. Here the acceleration on 

the PCOM (Pedestrian’s Centre Of Mass) is measured, 

which is the point at the back near the fourth lumbar 

vertebra [22]. The estimated step length is calculated as 

22estSL K lh h= ⋅ −  
(36) 

in which l  is the leg length of the pedestrian, K is a 

calibration value and h  is the vertical displacement of 

the PCOM in one step. The PCOM is ascending and h  

can be described as 

0 0

0 0

,

asc ascT T T T

vert pcom

T T

h a dt dt
+ +

′
 

=  
 
 

∫ ∫  

(37) 

Here ascT  is the ascending time of the PCOM and 

,vert pcoma  is the vertical acceleration of the PCOM. 

Another empirical algorithm is presented in Ref. 

[23], where the step frequency stepf  and the 

pedestrian height h  are utilized. The estimated step 

length is as follows 

( )est stepSL h a f b c= ⋅ ⋅ + +  (38) 

where a , b  and c  are calibration parameters, 

which are obtained by a complex training process using 

a short-time Fourier transform. 

Table 2 summarizes these algorithms. The high error 

for the second variant is caused by placing the sensors 

in the pocket and not on the PCOM. 

4. Orientation Estimation 

Below, multiple techniques are introduced. The 

Madgwick algorithm, which we employ, is described 

in detail. 

4.1 Problem Description 

Accurate orientation plays an important role, since 

incorrect orientation causes parts of the gravitational 

acceleration to be interpreted as linear acceleration, 

resulting in huge errors. The problem to estimate the 

orientation was first formulated by Wahba [24]. There, 
the DCM B

RC  between a reference frame R and a body 

frame B is determined by using co-registered vectors. 

For this, a least-square loss function ( )L ⋅  is 

minimized, given as [24, 25]. 

( )21
( ) | |

2
B B B R
R i i R i

i

L a= ⋅ ⋅ − ⋅∑C Cv v  
(39) 

Here, B
iv is a set of unit vectors measured in the 

body frame, R iv are the corresponding vectors in the 

reference frame and the ia  denote non-negative 

weights. 

For the solution of this problem, multiple algorithms 

have been proposed, which can be classified into 

deterministic and optimal ones [26]. For the 

deterministic algorithms, the attitude is computed by 

using a minimal set of measured data and solving 

non-linear equations. In contrast, the optimal 

techniques apply more than the minimal set of 

measured data and minimize a cost function. Below, 

some algorithms are presented. 

The TRIAD algorithm is a deterministic algorithm 

[27], where two measured non-parallel reference 

vectors are normalized and combined to construct two 

triads of orthonormal vectors. In contrast, QUEST is an 
 

Table 2  Evaluation of step length estimation algorithms.  

 Eq. (35) [19] Eq. (36) [22] Eq. (38) [23] 

Technique Empirical Biomechanical 
Fourier 
transform 

Accuracy 6.3% 
20.5% 
(5.0% in Ref. 
[21]) 

2.5% 

Robustness High Medium Low 
Calibration 
efforts 

Simple Medium High 

Performance Medium Medium High 
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optimal algorithm where Davenport’s q-method is 

applied to find the optimal quaternion which is a 

transformation of Wahba’s loss function [26, 27]. In 

addition, there are many KF (Kalman Filter) based 

approaches. Here, accelerometer and magnetometer 

data are fused to alleviate the drift from the gyroscopes. 

As an example, a quaternion based EKF (Extended 

Kalman Filter) is presented in Ref. [28]. An alternative 

to the KF is the CF (Complementary Filter). Compared 

to KF, it is simpler and more effective. Examples in 

Refs. [29, 30] present that the human motion tracking 

using EKF needs to be captured at sampling rates 

above 512Hz, which exceeds the maximum sampling 

rate of 200Hz of Android-based devices to be used in 

this paper. In Ref. [7], the Madgwick algorithm is 

presented, which will be used in our system. It is a 

highly effective CF, utilizing the gradient descent 

technique. It employs accelerometer and magnetometer 

data to alleviate the drift of the gyroscopes. It is 

presented below. 

4.2 Madgwick Algorithm [7] 

Let ˆN G  denote the normalized vector of the 

gravitational field in the local navigation frame and let 

ˆB g  be the associated measured field in the body 

frame. Since gravitation is directed into the earth, ˆN G
only exhibits one vertical component, i.e. 

[0,0 1ˆ , ]N T=G  
 

(40) 

According to Eq. (18), ˆN G  can be transformed 

into the body frame. Hence, the difference gf  

between the field, transformed into the body frame, and 

the measured field can be written as 

ˆˆ ˆ ˆ( )N N
g N B p N B pf ∗

← ←= ⊗ ⊗ −q G q g  
 

(41) 

where ˆN
pG  and ˆN

pg  are the pure quaternions of 

ˆN G  and ˆB g . Analogous, the difference mf  

between the magnetic field ˆN M  and the measured 

counterpart ˆB m  in the body frame can be written as 

ˆˆ ˆ ˆ( )N N
m N B p N B pf ∗

← ←= ⊗ ⊗ −q M q m  
 

(42) 

In contrast to ˆN G , the earth’s magnetic field ˆN M  

has one component along the north direction. It has no 

component along the east direction. Moreover, due to 

the curvature of the earth, the orientation of the 

magnetic field can be directed into the earth, hence 

there is also a component along the vertical direction. 

The inclination specifies this angle between the 

horizontal and this field. It is approximately 65�  in 
Dresden, Germany [31]. Hence, 

[ ,0ˆ , ]N T
north verticalM M=M  

(43) 

Additionally, there is a deviation between the 

magnetic north and the true north. This angle, denoted 

as declination, between lines from the observer to 

magnetic and true north is small for locations far from 

the North Pole. During the Madgwick algorithm we 

assume the declination to be 0� . 
Note, that gf  and mf  are functions of̂ N B←q . 

Depending on the availability of the sensors, either gf

or mf  or both should be minimized to determine the 

orientation. To encompass all cases we define f as 

,

incorporating gravitational
[ ],

field only (GF)

incorporating gravitational

and magnetic field (GMF)

g

g

m

f

f
f

f



= 
 
  

 

 

 

(44) 

and our object is to minimizef . According to Ref. [7], 

the gradient descent algorithm is applied, which is 

iteratively performed: 

1 0
, Starˆ t : ̂

k k

k
N B N B N B

k

F

F

∇µ
∇−← ← ←= −q q q
‖ ‖

 
 

(45) 

Here, µ is the step size, 
0

ˆ
N B←q is the initial 

orientation, which could be determined with the help of 

a magnetometer. kf  represents the value of f  in 

each iteration, i.e. 

1 1

1 1

1 1

ˆˆ ˆ[( ) ],

( )

( )

ˆ

ˆˆ ˆ ˆ
,

ˆˆ ˆ ˆ

k k

k k

k k

N N
N B p N B p

N N
k N B p N B p

N N
N B p N B p

GF

f
GMF

∗

∗

∗

− −

− −

− −

← ←

← ←

← ←

⊗ ⊗ −

= ⊗ ⊗ −

⊗ ⊗



 
 
  −

q G q g

q G q g

q M q m

 

(46) 
Instead of minimizing f  or kf  directly, the 
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minimization of the squared error loss kF  is 

employed which is written as 
1

2
T

k k kF f f= �  
(47) 

Applying the chain rule, it can be easily shown that 

k

T
k f kF J f∇ = �  

(48) 

where 
kf

J is the Jacobian of
kf . 

The application of Eq. (45) is the first part of the 

Madgwick algorithm. In parallel, the orientation 

determined with the help of the measured angular 

velocity from the gyroscope is available (see Eq. (20)). 

The application of Eqs. (20) and (21) for time step k  

reads 

1, ,,
ˆ ∆

k est kN B N B N B t
ωω −← ← ←≈ + ⋅ɺq q q  

(49) 

where 

, 1,

1

2
ˆ

k k est

B
N B N Bω −← ←= ⋅ ⊗ɺ

pq q w  
(50) 

Here, we have used the subscript ω  to distinguish 

the orientation determined with the help of the angular 

velocity from the orientation determined by the 

gradient descent algorithm of Eq. (45). For the latter, 

we will use the subscript ∇  in the remainder of this 

paper. Both orientations are combined by means of a 

CF to determine the final orientation estimator: 

, , ,
(1 ) ,0 1

k est k kN B N B N B∇ ω
γ γ γ← ← ←= ⋅ + − ⋅ ≤ ≤q q q  

(51) 

We use the index est  to specify this final 
orientation estimate. γ  is the weight of the filter. 

Generally, the application of Eq. (45) requires multiple 

iteration steps before applying the CF in Eq. (51). 

According to Ref. [7], one step is sufficient, if the 

convergence rate is greater than or equal to the rate of 

change of the physical orientation, which can be 

realized by selecting an appropriate value of the step 
sizeµ . Below, this case is considered. In doing so, the 

individual iteration steps of Eq. (45) can be thought of 

being timely aligned to the measured angular velocity. 

As a modification to Eq. (45), the CF result ,k estN B←q  

is therefore used directly in place ofˆ
kN B←q : 

, 1,
ˆ

k k est

k
N B N B

k

F

F∇

∇µ
∇−← ←= −q q
‖ ‖

 
(52) 

Measurements of the magnetic field in the vicinity of 

electrical circuits or metal structures can lead to 

significant errors in the inclination. These errors can be 

made visible by back-propagating the measured 

magnetic field in the body frame into the local 

navigation frame N, according to Eq. (17), i.e. 

1, 1,, ,: ˆ ˆˆ ˆ
k est k est

N B
p k N B p k N B

∗
− −← ←= ⊗ ⊗n q m q  

(53) 

Ideally, the direction of ˆN
pM  and ˆN

kn  should 

match for every time stepk . However, magnetic 

distortion produces inclination errors, which are visible 
as non-zero components in east direction, i.e. 

, , , ,[0, , , ]ˆN T
p k north k east k vert kN N N=n  (54) 

These effects of erroneous inclination can be 

reduced by simply rotating the magnetic field vector 

about the z-axis in such a way, that the east component 

vanishes. This quaternion 

2 2
, , , ,: [0, ,0,ˆ ]N T

p k north k east k vert kN N N= +O  
(55) 

can then be used in place of ˆN
pM  within the next 

iteration, e.g. in Eq. (46). 
Table 3 broadly summarizes the aforementioned 

orientation estimation approaches. 
 
Table 3  Evaluation of orientation estimation algorithms.  

 
TRIAD 
[27] 

QUEST 
[27] 

EKF [28] CF[7] 

Magnetic 
perturbation 

Sensitive Sensitive Median Median 

Implementation 
efforts 

Simple Simple Median Median 

Orientation 
error 

Large Large Small Small 

Convergence 
speed 

N/A N/A Slow Fast 
 

5. PNS Structure 

To benefit from the advantages of both the INS and 

the PDR, our system consists of two sub-systems as 

shown in Fig. 9. For the INS, a smartwatch is employed, 

which is attached to the ankle. In contrast, a 
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smartphone is used for the PDR to be held at hand. 

Both subsystems will be detailed in the subsequent 

paragraphs. This is followed by the description of the 

fusion process for the final output. 

5.1 INS 

Below, the general form of our INS is illustrated. 

Afterwards, methods for improving the accuracy are 

described. 

5.1.1 INS Structure 

Fig. 10 shows the structure for our INS, which is 

mostly equivalent to Fig. 8. Likewise, the underlying 

mathematics is mainly identical to the ones in Section 

3.1. The only modification is due to the Madgwick 

algorithm, which requires accelerometer data in 

addition to gyroscope measurements to estimate the 

orientation. However, we have modified the Madgwick 

algorithm, to cope with magnetic disturbances.  The 

details are given below in Section 5.1.2. 
 

 
Fig. 9  System structure.  
 

 
Fig. 10  Flowchart of INS in our PNS.  
 

After performing the improved Madgwick algorithm 

at timek , the measured acceleration from the same 
time, characterized as a pure quaternionk

B
p,a , is first 

transformed from the body frame into the N  frame 

according to Eq. (56). The vector part of the result 

k
N
p,a  specifies the acceleration vector in the N  

frame, denoted asN ka . Afterwards, gravity is removed 

as shown in Eq. (57). The velocity and the range can 

then be determined with the help of Eqs. (58) and (59). 

k k
ˆ ˆ

k k

N B
N B N B

∗
← ←= ⊗ ⊗p, p,a q a q  

(56) 

,
N N N

lin k k= −a a G  (57) 

1 , ∆
N N N

k k lin k t−= + ⋅v v a  (58) 

2
1 1 ,

1
∆ (∆ )

2
N N N N

k k k lin kt t− −= + ⋅ + ⋅ ⋅r r v a  
(59) 

5.1.2 Upgrades 

For improving the accuracy, we employ two 

techniques, i.e. the ZUPT method from Section 3.1 and 

another approach, denoted as non-ZUPT. Both are 

described in turn. However, firstly an enhanced version 

for detecting the stance phase is presented, which is the 

basis for both methods. 

Stance Phase Detection 

Fig. 11 shows the conditions for detecting the stance 

phase. Stance,1C  to Stance,3C  (according to Ref. [17]) 

have already been described. However, for increasing 

the precision, we have added conditions Stance,4C  and

Stance,5C , as we will show in our measurements. All 

conditions need to be fulfilled simultaneously, which is 

characterized by the logical AND. 

 
Fig. 11  Logic for detecting the stance phase.  
 

Stance,4C  shall express that at stance the variance of 

the angular velocity is smaller than a threshold

2, gyrmax M
TH . Instead of the variance, which is unknown, 

the sample moment about the sample mean2
,

B
k gyrM  is 
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employed. Thus, Stance,4C reads 
 

2
2
, ,

Stance,4

if 

false, otherwise

true,
gyr

B
k gyr max M

M TH
C

 <= 


 

 

(60) 

where 2
,

B
k gyrM  is determined as Ref. [18] 

( )2
2
,

1
| | | |

2 1

k n
B B B

k gyr k k
k n

M
n

+

−

= −
+ ∑ ω ω  

 

(61) 

Here, | |B
kω is the sample mean for the 2 1n+  

sampling points: 

1
| | | |

2 1

k n
B B

k k
k nn

+

−

=
+ ∑ω ω  

 

(62) 

In most commercial and clinical applications, the 

IMU is preferred to be mounted on the ankle instead of 

on the foot [32]. Therefore, we also have mounted the 

IMU on the ankle in our experiments, as shown in   

Fig. 12. As can be seen, the body frame is aligned such, 

that the x-axis points upward, the y-axis points in 

walking direction and the z-axis points in the direction 

of the viewer. At stance, the z-component of the 

angular velocity shall be zero (see Fig. 13) [33]. 

Therefore, we have added a condition in this regard, 

whose necessity becomes obvious in the experiments. 

, , ,
Stance,5

true, if | |

false, otherwise

B
z k max gyr zTH

C
ω <

= 


 

 

(63) 

Here, ,
B

z kω is the z-value of B kω  from sample k, 

and , ,max gyr zTH  is a threshold to be defined. 

ZUPT and non-ZUPT method 

As explained in Section 2.4, the swing phase 

occupies around 40% of the full gait-cycle for 

continuous walking. This time can be measured and is 

the criteria for detecting if a stride is not successive 

with the previous one, which means that continuous 

walking is interrupted. Therefore, we set the condition  

2true, if 3
false, otherwise

Swing Stance
Successive

T T
C

 ≥ ⋅= 


 

(64) 

 

 
Fig. 12  IMU attached to the ankle.  

 

 
Fig. 13  Angular velocity along the z-axis ([33] modified).  

 

The factor 23  arises, if one firstly determines the 

expected time for a full gait-cycle ,Gait expT  for normal 

continuous walking, i.e. for assuming successive 
strides: 

,

100
:

60Gait exp StanceT T= ⋅  
 

Thus, the expected duration of the swing phase 

,Swing expT  is 

, ,

40 2
: 0.40

60 3Swing exp Gait exp Stance StanceT T T T= ⋅ = ⋅ = ⋅  

If the duration of the swing phase SwingT  is below

,Swing expT , then walking is considered non-successive, 

since a long stance phase indicates that the person is 

standing. In this case, we apply the ZUPT method; 

otherwise we use non-ZUPT: 
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non-ZUPT, if 
Technique

ZUPT, otherwise
SuccessiveC true=

= 


 

(65) 

The reason for this is that the velocity should only be 

set to zero, according to ZUPT, if the person is fully 

standing, i.e. if the strides are not successive. Would 

the IMU being attached directly on the foot, then ZUPT 

could be used for every stride. However for the IMU 

being placed at the ankle, the velocity will not go back 

to zero, since the ankle can be in motion even if the 

velocity of the foot is zero. Hence ZUPT cannot be 

used in this case. Instead, we apply the non-ZUPT 

technique, introduced in Ref. [32]. It is presented 

below. 

In contrast to ZUPT, the initial velocity is not set to 

zero, but is calculated with the help of Fig. 14. When 

the pedestrian is at mid-stance (please see Fig. 5), there 

exists an angular velocity B tω  approximately 

tangential to the ground surface. Referred to Fig. 12, it 

points in the direction of the z-axis. The velocity of the 

IMU in the body frame can then be computed as: 

B B B
t t= ×v ω d  

 

(66) 

This means the tangential velocity B
tv  of the IMU is 

the cross product of the angular velocity and the 

rotation moment armBd , which points from the 
ground to the IMU. B

tv  is then transformed to  N
tv  

according to Eq. (17). 
 

 
Fig. 14  Tangential velocity at mid-stance.  

 

Orientation Estimation 

In this paragraph some updates to the basic 

Madgwick algorithm are presented, which we employ 

in our PNS. As explained in Section 4.2, the 

accelerometers should only measure the gravitational 

acceleration and the magnetometers should only 

measure the earth’s magnetic field. Hence, the basic 

Madgwick algorithm assumes that linear accelerations, 

e.g. due to motion, and magnetic distortions can be 

neglected. In particular the first assumption is not valid, 

especially for the gait of a pedestrian in the swing 

phase. As shown in Ref. [34], the linear acceleration 

can reach up to 5m
s

. Moreover, temporary 

high-intensive magnetic distortion also affects the 

performance. Inspired by Ref. [35], we therefore have 

added some conditions for the usage of the algorithm. 

Firstly, the Madgwick algorithm is only applied at 

stance, where the linear acceleration should be at a 

minimum, otherwise the gyroscope data are used for 

determining the orientation: 

Madgwick
Orientation

if stance phase 
,

detected

Gyroscope, otherwise

C
C


= 



 

(67) 

Furthermore, if the magnitude of the measured 
magnetic field | |B m  and the magnitude of the 

reference earth’s magnetic field | |N
refb  (calculated 

by the World Magnetic Model [31]) are greater than a 

threshold magTH , the magnetic field is neglected 

because of present magnetic distortion. This condition 

is stated below, where a typical value is given as
30magTH Tµ= . 

Madgwick

GF, if || | | ||

GMF, otherwise

B N
ref magTH

C
 − >

= 


m b
 

(68) 

Here, the abbreviations GF and GMF from Eq. (44) 

were used. The full process for determining the 

orientation is illustrated in Fig. 15. The respective 

equation numbers are listed under each block. 
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Diamond symbols specify selections according to Eqs. 

(67) or (68). ,
ˆ

k estN B←q  is the final output at time step k. 

Dotted lines designate variables which become valid in 

the next time step k+1. 
 

 
Fig. 15  Process of the Madgwick algorithm ([7] modified).  

5.2 PDR 

In our PNS the IMU for the INS is attached on the 

ankle. In addition, another IMU is utilized for the PDR. 

This IMU constitutes a smartphone which the user 

holds in his hands. The main error source for an INS is 

small measurement errors which are accumulated over 

time. One way to alleviate these errors is by using 

ZUPT and non-ZUPT. Another alternative, described 

below, is to apply a PDR system in parallel, to limit the 

errors. 

Different PDR algorithms were described in Section 

3.2, especially in Table 2. For our PNS, we have 

selected the Weinberg algorithm [19]. Although 

Renaudin’s algorithm [23] is more precise, the robustness 

of Weinberg’s algorithm is higher and the calibration 

process is easier. Besides, in Ref. [36] it is shown that 

the Weinberg’s algorithm performs best, if the IMU is 

mounted on the waist or held in the hand steadily. 

To determine the vertical acceleration, required in 

Eq. (35), firstly the acceleration ,
N

p ka at point k  in 

the N-frame is calculated according to Eq. (17). 

k k
ˆ ˆ

k k

N B
N B N B

∗
← ←= ⊗ ⊗p, p,a q a q  

 

(69) 

where ˆ
kN B←q is the result from the Madgwick 

algorithm. The vertical acceleration is then simply the 

fourth component of this quaternion. The remaining 

constant K  in Eq. (35) is obtained individually for 

each user via a calibration process, e.g. by walking a 

distance of 5m. Fig. 16 shows the vertical acceleration 

for a walking sequence. The strides are detected with 

the help of the techniques described in Section 5.1.2 

and are separated by red lines. 

5.3 Fusion of INS and PDR 

Table 4 compares the characteristics of the PDR and 

INS. Since the update rate of the PDR system is low 

and the technique for calculating the step length is 

simple, the accuracy is worst for the PDR. However, it 

can be used complementary to the ZUPT/non-ZUPT 

INS. Due to the good performance of the INS, the PDR 
 

 
Fig. 16  Measured magnitude of vertical acceleration in a 
walking sequence.  
 

Table 4  Comparison of PDR and INS. 

Characteristics PDR INS 

Procedure 
Simple 
(stride length) 

Complex 
(double integration) 

Accuracy 

Medium 
(Requirement: 
accurate step 
detection and 
orientation 

High 
(Requirement: 
accurate stance-phase 
detection and 
orientation) 

Usage Flat (2D) Terrain (3D) 

Placement 
Head, waist, 
hand-held 

Foot, ankle, leg 

Sensor quality Low High 

Update rate 
Low 
(update when step 
detected) 

High  
(sampling rate of 
sensors) 

 



Building up an Inertial Navigation System Using Standard Mobile Devices 

 

313

system is applied simply to modify the stride length 

calculated by the INS. Therefore, we are employing 

another complementary filter, i.e. 
 

, , ,(1 ) , 0 1N N N
k est k INS k PDRα α α= ⋅ + − ⋅ ≤ ≤r r r  

(70) 

where ,
N

k estr  is the estimated length of the k-th stride 

and ,
N

k INSr  or ,
N

k PDRr  is the estimated length of the 

stride by the INS or PDR. Again,α is the filter weight. 

Fig. 17 illustrates the full process. In accordance to 

Table 4, we apply for the INS the IMU of the 

smartwatch, which is attached on the ankle, and for the 

PDR the IMU of the smartphone, which is held in the 

hand. The fusion takes place in real-time and is 

performed in the smartphone. For this reason a 

permanent Bluetooth data connection between both 

entities is maintained. 
 

 
Fig. 17  PNS process.  

6. Experiments 

In this section the set-up of the experiments is 

introduced firstly. Afterwards, the results are 

presented. 

6.1 Experimental Set-up 

After presenting the hardware and software utilized, 

details regarding sampling times, configuration, error 

metric and scenarios are described. 

6.1.1 Hardware and Software 

For our measurements, we employ the Sony 

SmartWatch 3 together with the HTC One M8 

smartphone. Tables 5 and 6 detail the specifications of 

both entities. The access to the sensors as well as the 

communication between both IMUs is performed with 

the help of the API (application programming 

interface). Finally, the evaluation of the sensory data is 

performed in MATLAB for the experiments, whereas it 

would be implemented on the smartphone for a real 

user application. 

The sensors are accessed via the Android API. There 

are two types of sensors: raw sensors and synthetic (or 

virtual) sensors. Raw sensors directly provide the 

outputs of the MEMS sensors, whereas the synthetic 

sensors perform some form of preprocessing, filtering 

or fusion before returning the data. For our PNS we 

employ raw sensors only. 
 

Table 5  Specification of the Sony SmartWatch 3. 

Operating System Android Wear 6.0.1 

Google Play Services Version 9.4.52 

Processor 
Quad-core ARM Cortex A7 1.2GHz 
CPU 

RAM 512MB 

Radios 802.11 a/b/g/n/ac Wi-Fi, Bluetooth 4.1 

Sensors 
Accelerometer, magnetometer, 
gyroscope 

Dimensions 36mm× 10mm× 51mm (74 grams) 
 

Table 6  Specification of the HTC One M8. 

Operating System Android Wear 6.0 

Google Play Services Version 9.4.52 

Processor 
Qualcomm MSM8974AB Snapdragon 
801 

RAM 2GB 

Radios 802.11 a/b/g/n/ac Wi-Fi, Bluetooth 4.1 

Sensors 
Accelerometer, magnetometer, 
gyroscope 

Dimensions 
146.4mm× 70.6mm× 9.4mm (160 
grams) 

 

6.1.2 Alignment of Sampling Times 

We have configured the IMUs to have a maximum 

sampling frequency of 200Hz. Unfortunately, the 

sampling times of the accelerometer, gyroscope and 

magnetometer are not synchronized. Hence, to timely 

align these samples, we apply a linear interpolation for 

the raw output data of the sensors. This enables to 

synchronize the sensors within a single IMU. 

Nevertheless, we are employing two IMUs, i.e. in the 
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smartphone and in the smartwatch. Thus, 

synchronization between both is required. We solve 

this issue by performing a calibration prior to the 

measurements. In our experiments, the user is 

requested to jump twice at the beginning. This motion 

is recognized by both IMU and enables to synchronize 

the time. 

6.1.3 Configuration 

Table 7 summarizes the parameters being used in 

our experiments. These were determined with the help 

of preliminary tests. We set 33n = , thus 2 1 67n+ =  

points are considered for calculating the variance of the 

acceleration and angular velocity. For our sampling 

frequency of 200Hz this is approximately 30% of the 

time period of one stride. The other parameters were 

configured with the objective to avoid incorrect stance 

phase detections. 

To circumvent PDR outliers, we have included a 

separate condition forα . This will be described in 

more detail in Section 6.2.3. 

6.1.4 Error Metric 

To quantify our results, we measure the error relative 

to the TTD (Total Travelled Distance) TTDD [15]. 

Hence, our relative error TTDe  is defined as 

∆

TTD
TTD

r
e

D
=  

 
(71) 

where ∆r  is the absolute position error for the end 

point of the walking trajectory in the local navigation 

frame. Utilizing ∆ northr  and ∆ eastr  as differences in 

north and east direction, for two-dimensional 

considerations ∆r  reads 

2 2
∆ (∆ ) (∆ )north eastr r r= +  

 

(72) 

6.1.5 Scenarios 

We perform five different types of experiments, as 

listed in Table 8. These are specified in more detail in 

the next subsection. 

 

 

 
 

Table 7  Constants definitions.  

Constant Value 
n  33 

K  0.49 

,min accTH  9.3m
s

 

,max accTH  10.3m
s

 

2, accmax MTH  1.5 2
4

m
s

 

,max gyrTH  1.5 rad
s

 

2, gyrmax MTH  0.6 2
2

rad
s

 

, ,max gyr zTH  1.0 rad
s  

α  
,

,

| |
0.5, if  0.8 1.2

| |

otherwise1.0,

N
k INS

N
k PDR


 < <




r

r  

 

Table 8  Scenarios for the experiment.  

Type Specification 

Type I Walking on straight line with break in the middle. 

Type II 
Walking on straight line with break in the middle, 
and reduced walking speed for the second part. 

Type III 
Walking forward on straight line with break at 
reversal point, then turn around and walking back 
on straight line. 

Type IV 
Walking on rectangular trajectory with stop to turn 
in corners. 

Type V 
Walking on rectangular trajectory without stop to 
turn in corners. 

6.2 Experimental Results 

The results for our PNS for each of the five scenarios 

from Table 8 are presented in turn. For type I to III the 

initial orientation is specified prior to the experiments, 

to exclude influences of magnetic disturbances. These 

influences are then considered for type IV and type V. 

6.2.1 Type I 

In the first experiment, the scenario is a straight path 

of 51.1m. In our measurements, the test person walks at 

an average speed of 1.18m
s

 and stands still in the 

middle for around 8s. Then, the pedestrian continues to 

walk to the end of the path. Already within this very 

simple scenario, the ZUPT and non-ZUPT methods are 

employed for the INS. As an example, ZUPT is used at 

the beginning and directly after the single stop, and 

non-ZUPT is used otherwise.  

For the smartwatch, the magnitude of the 
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acceleration is illustrated in Fig. 18a. First of all, the 

waiting phase between 24s and 32s is visible, where the 

magnitude of the acceleration is equal to the gravity 

( ≈  9.8
2

m
s

). As an illustration, the data between 5s 

and 10s is enlarged in Fig. 18b to illustrate successive 

walking. The swing phase is marked in green and the 

stance phase in red, respectively. These are separated 

by conditions Stance,1C  (Eq. (25)), Stance,2C  (Eq. (28)) 

and Stance,3C  (Eq. (32)). The black rectangles denote 

wrong detections of stance phases, when only these 

three conditions are applied. 

Fig. 19 illustrates the associated angular velocity. 

Just as before, the stop of the pedestrian is visible, since 

the angular velocity stays around rad0 s  between 

24s and 32s. Again, the detected swing and stance 

phases are marked, using only the aforementioned 

conditions Stance,1C , Stance,2C  and Stance,3C . In 

addition, wrong detections of stance phases are 

indicated by black rectangles. Fig. 20 shows the 

associated angular velocity along the z-axis, where we 

have included the black rectangles for convenience. It 

is obvious that the angular velocity along the z-axis is 

approximately rad0 s . Hence, these wrong stance 

phase detections can be ruled out byStance,5C . Similar 

considerations can be made forStance,4C . This justifies 

the introduction of the additional conditions in Fig. 11 

for our PNS. For the conditions Stance,1C to Stance,5C , 

Fig. 21 illustrates the detection of the stance phase. The 

individual steps are clearly separable. Moreover, no 

detection errors occur. Fig. 21b enables to assess the 

relation between the duration of the swing and stance 

phase. In respect to the picture, as a rough estimate, the 

strides should be considered non-successive if the 
duration of the stance phase is longer than 3 2  times 

the length of the swing phase, which is in accordance to 

Eq. (64). The magnitude of the velocity is shown in 

Fig. 22. Although it is hard to see, the velocity for a 

new stride is only 0m
s

 at around 5s and 33s. This is 

because of ZUPT, which is only used when the strides 

are non-successive. In all other cases a small positive 

value remains due to non-ZUPT. 
 

 
(a) Full time span 

 
(b) Selected extract 

Fig. 18  Measured magnitude of acceleration.  
 
 

 
(a) Full time span 

 

 
(b) Selected extract 

Fig. 19  Measured magnitude of angular velocity.  
 
 

 
(a) Full time span 

 
(b) Selected extract 

Fig. 20  Measured magnitude of angular velocity along the 
z-axis.  
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(a) Full time span 

 
(b) Selected extract 

Fig. 21  Derived swing and stance phase.  
 

 
(a) Full time span 

 
(b) Selected extract 

Fig. 22  Measured magnitude of velocity.  
 

 
Fig. 23  Estimated path and real path. 
 

The trajectory of the estimated path (red line) in 

comparison to the real path (green line) is illustrated in 

Fig. 23. Both trajectories are nearly the same, which is 

a first indicator for the quality of our PNS. The final  

 

position error relative to the TTD is TTDe = 0.5%. In 

contrast, the results reported in Ref. [32] show an error 

of 3.6%, which is significantly worse. There, only 

non-ZUPT is considered, which might be one reason 

for the differences. 

6.2.2 Type II 

The scenario for type II is exactly the same as for 

type I, except that the speed is reduced for the last part 

of the path. To be more precise, the user starts walking 

at a speed of 1.28m
s

, stops in the middle for about 5s 

and continues walking at 0.90m
s

. Fig. 24 shows the 

detection of the stance phase. It is obvious that for 

reduced velocity, the duration of the stance phase 

increases, as it is expected. As before, if we would only 

use conditions Stance,1C  to Stance,3C , the stance phases 

could not be reliably detected (see Fig. 25). 

The trajectory is shown in Fig. 26. The red and blue 

lines, which are the estimated path for the first and 

second period, correspond well with the real trajectory 

(green line). The final position error is TTDe = 0.3%. 
 

 
(a) Full time span 

 
(b) First part 

 
(c) Last part 

Fig. 24  Derived swing and stance phase. 
 

 
Fig. 25  Non reliable stance phase detection according to 
Ref. [17].  
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Fig. 26  Estimated path and real path.  

 

 
(a) Full time span 

 
(b) Selected extract 

Fig. 27  Derived stance phase detections including wrong 
detections.  

 

6.2.3 Type III 

For the third type, the pedestrian walks on a straight 

path, stands still at the end, turns around and walks 

back to the origin. For the concrete experiment 

presented below, the path has a length of 24.4m (one 

way) and the user walks at an average speed of 

1.20 m
s

. The detection of the stance phases is 

depicted in Fig. 27. By using our enhanced conditions, 

within the time interval [30s, 33s], still three gaits are 

identified, which are incorrect detections. These 

detected gaits are caused by moving the ankle during 

turning. Of course, these gaits also appear for the 

non-enhanced conditions. For these three wrong gaits, 

the estimated lengths by only considering the INS are 

5mm, 1.4cm and 2.3cm, respectively. The associated 

calculated step lengths by only employing the PDR are 

1.05m, 0.99m and 1.12m, respectively. This mismatch 

between the values of the INS and the PDR shows that 

these are incorrect detections. For this reason, we have 

included the condition for α  in Table 7. For these 

gaits, it holds that ,

,

| |
0.05 0.8

| |

N
k INS

N
k PDR

< ≪
r

r
. Thus, α

is set to one. In doing so, the PDR results are ignored 

according to Eq. (70). 

Fig. 28 shows the trajectory, where the red and blue 

lines are the estimated paths for the one-way and return 

trip, respectively. Once more, the green colour denotes 

the real trajectory. The results indicate that the 

estimated path corresponds well to the true path. The 

final position error is about 0.26m, which implies

TTDe  =0.54%. Repeating the experiment five times, as 

shown in Table 9, produces an average ofTTDe =1.11%.  
 

 
Fig. 28  Estimated path and real path.  

 

Table 9  Data series for type III experiment.  

Experiment Specification 

Walk 1 0.54% 

Walk 2 1.62% 

Walk 3 1.22% 

Walk 4 0.84% 

Walk 5 1.35% 

Average 1.11% 
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This is well below state-of-the-art approaches, e.g. 5% 

presented in Ref. [15]. 

6.2.4 Type IV 

All further experiments are oriented on the 

experiment described in Ref. [15]. Here, the trajectory 

is rectangular shaped with dimensions 13.2m× 8.3m. 

Hence, the TTD is 43m. For type IV the user stops in 

each corner, turns around and continuous to walk. The 

experiment is repeated five times. Fig. 29 shows the 

trajectory for one sample. Again, the green lines denote 

the real path and the red line is the estimated trajectory. 

As can be seen, the initial heading is quite different. 

After rotating the estimated path, which is shown in 

blue, both paths correspond well. Using this path,

TTDe  =0.58%. The problem of the initial orientation 

will be described at the end of this section. Table 10 

contains the results for all five experiments after 

calibrating the initial orientation. 

6.2.5 Type V 

The experiments for type V are similar to type IV, 

except that the user walks continuously across the 

corners. Fig. 30 illustrates the trajectories, where the 

colours are identical to type IV. In Fig. 30, the 

trajectories correspond well, which shows that in this 

case the initial orientation is correct. Compared to Ref. 

[15], where 5% error is reported, we could achieve 

1.73%, as shown in Table 11 for five repetitions of the 

experiment. In Ref. [35] an even better result of 0.8% 

error is reported. For these measurement however, a 

superior IMU, i.e. the MTiXsens [37], is utilized which 

offers better resolution and accuracy. Moreover, the 

IMU is mounted on the foot, which indicates an easier 

detection of the stance phases and enables to reset the 

velocity in each gait. 

It remains to characterize the error of the initial 

heading for type IV, in contrast to type V. The problem 

is caused by the measured magnetic field, as it is shown 

in Fig. 31. Although the starting point of these two 

types of experiments is the same, the value of the 

magnetic field in type IV (10 Tµ≈ ) is opposite to the 

value in type V ( 10 Tµ≈− ). This results in wrong 

heading information being applied by the Madgwick 

algorithm. The root cause can be an additional 

magnetic field being available at the time when the 

experiment of type IV was executed. One possibility to 

solve this issue is by incorporating additional 

information, e.g. by using the orientation vector of 

another positioning system. 
 

 
Fig. 29  Estimated path and real path.  

 
Fig. 30  Estimated path and real path.  
 

Table 10  Data series for type IV experiment with 
additional calibration of initial orientation.  

Experiment Specification 

Walk 1 2.82% 

Walk 2 1.52% 

Walk 3 0.90% 

Walk 4 2.68% 

Walk 5 0.58% 

Average 1.66% 
 



Building up an Inertial Navigation System Using Standard Mobile Devices 

 

319

Table 11  Data series for type V experiment with additional 
calibration of initial orientation.  

Experiment Specification 

Walk 1 1.72% 

Walk 2 0.42% 

Walk 3 2.70% 

Walk 4 0.35% 

Walk 5 3.47% 

Average 1.73% 
 

 
(a) Example from Type IV 

 
(b) Example from Type V 

Fig. 31  Measured magnetic field along the z-axis.  

7. Conclusion 

The experiments have shown that our PNS fulfils the 

requirements on an indoor positioning system. First of 

all, it is cheap and does not require any additional 

hardware, except a smartphone and a smartwatch. Our 

results keep pace with state-of-the-art, whereby we 

outperform most approaches, except Ref. [35]. The 

latter however utilizes a better IMU, with superior 

sensors. For our measurements, we have shown that the 

error for the straight line experiments is below 1%. For 

all other scenarios, the average error is always below 

2%, if we do not consider the initial orientation error 

due to magnetic disturbances. Nevertheless, our system 

cannot fully resolve the drawback of all INS/PDR, i.e. 

the accumulation of errors over time. Having said this, 

our system offers a very good performance since it 

overcomes two main error sources of common INS: 

wrong turning angles and too long/too short estimated 

path lengths. Hence, it is at very well suited as a 

bridging technology for seamless positioning. 
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