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Abstract: This paper presents the development of a PNS (Pedestrian Navigation System), which utilizes accelerometer, gyroscope and

magnetometer data to enable accurate positioning. Therefore, the sensor basics as well as the mathematics regarding reference frames
and coordinate transformations are introduced initially. Particular focus is given to quaternions, since they provide a
performance-effective means to execute rotations. In great detail the two distinct approaches for a PNS are introduced, i.e. INS (inertial
navigation systems) and PDR (pedestrian dead reckoning). For each, a comparison of state-of-the-art techniques is presented. Special

attention is paid to orientation estimation and stance phase detection. Our system combines the most promising techniques and
describes improvements, whose usefulness becomes obvious in our experiments. We have applied our PNS in five different test
scenarios. For the most complex rectangular-shaped use case, we achieve on average error of 1.66% with regard to the total travelled
distance, which is superior to other recent PNS utilizing comparable sensors.
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1. Introduction

Nowadays much research activities are devoted to
provide hybrid localization. A related topic, which is a
first step towards this goal, is seamless positioning.
Here, multiple individual localization systems are
distributed spatially, for instance in different rooms for
indoor applications. The objective is to enable
localization by selecting the positioning system
available on the very spot without informing the user
that a transition to another system might have taken
place. However, these areas could be non-overlapping,
thus generating black sectors, where positioning is
impossible. One alternative to bridge these spots is by
using dead reckoning systems, as explained below.

Loosely speaking, navigation systems can be
classified into position fixing and dead reckoning
techniques. For the former, the object to be localized is
evaluated with regard to known features in the
environment. As an example, the position of a GPS
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receiver can be determined with the help of satellites,
whose positions are known. However, this category
also includes most indoor positioning systems. For
instance, a Wireless Local Area Network receiver in a
smartphone could be localized by measuring the signal
strength regarding multiple access points. Another
example is an ultra-wideband radar system consisting
of multiple base stations, which determine the distance
to a mobile entity, respectively, by measuring the time
of flight [1]. Another famous approach is FMCW
(frequency modulated continuous wave) radar, where
the distance is computed by applying frequency chirps
and utilizing time difference of arrival [2]. In contrast,
dead reckoning systems do not require any knowledge
about the environment. Moreover, they do not depend
on any remote hardware. Instead, they employ user
attached sensors, to determine the position in respect to
a starting point. Usually, accelerometers, gyroscopes
and magnetometers are utilized.

Within this paper, the steps necessary to build up a
PNS are presented, where only the aforementioned
sensors are used, which are all available in modern
hand-held devices. A particular focus is on the basics
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and on related work. State-of-the art approaches fobody within an inertial navigation system, based on

INS and PDR are analysed and auspicious candidatddewton’s second law of motion, i.e.

are selected. It turns out that orientation esionadnd F=mi (1)

stance phase detection significantly influence the

results; thus strong techniques for both are e&bdr
The rest of this paper is organized as follows.

Section 2 m_troduces the theoretical foundationg, _e mass is relocated, to finally create another eyitii.
sensor basics, reference frames, and Coord'”atevnh the help of the measurement scale, the vafue o

transformations. Especially,  quaternions A€ ihe external acceleration can be determined. A
introduced, which are a performance effective means. . iisation of this principle as MEMS (micro electr

for executing rotations. Related work is preserited mechanical system) is shown in Fig. 1b. Here, the

Section 3. In particular, the two main techniques a values of the capacitance@l and Cz are changed
described and comparisons of approaches fron}jue to the relocation of the mass as a result tefeal

literature are given. As already stated, accurate, ..aleration. It is worth mentioning again, thaé th

orientation _'S a k.ey factor. M.ultlple. variants are. values of accelerometers are referred to an ihertia

presented in Section 4. On this basis, our PNS i§,5i5ation system. Hence, gravity is considered as

introduced in Section 5. Manifold experiments are ;. .aleration by the sensors. To take this into @wco

listed in Section 6. Here, our system is evaluated o torm linear acceleration denotes accelerathwrey

regard to other state-of-the art approaches. Memov o gravity component is already removed.

unresolved issues are identified. The last Section Gyroscopes determine the angular  velocity.

concludes the paper. Therefore, the Coriolis effect is applied, whichtss

2 Basics that a massiM with velocity Vv experiences a force
F. in a reference frame rotatingcat

F. =—2n(@xV) (2)

Fig. la shows the principle. The mass is kept in
balance in such a way that an equilibrium of forces
arises. Due to any additional external acceleratios

This section presents terminology and essential
basics. After presenting the sensors used, referenc
frames and some mathematical principles regarding The principle is shown in Fig. 2a, where a single
coordinate system transformations are introducedmass M is stimulated to vibrate along a drive axis. If

Finally, the human gait cycle is illustrated. in this context the gyroscope is rotated, then a
secondary vibration is generated along the

perpendicular sense axis due to the Coriolis forbe.
Although today’s mobile end devices cover angular velocity can then be derived by measufirsy t
manifold sensors, only accelerometers, gyroscopes a Secondary rotation [6]. One realisation for MEMS is
magnetometers are employed in this paper and arBased on acomb drive which is set into vibratiee(
introduced below. Alternative sensors are not
considered. The reasons for this are twofold. Gn th
one hand, these sensors provide raw data, whereas
other sensors being software entities, which tiliz
these data to perform some form of preprocessimg. O
the other hand, sensors like barometers do onkyigeo . Jied

very coarse information for positioning [3]. (a) Principle [4] (b) MEMS realization [5]
Accelerometers measure the acceleration of a rigidFig. 1 Accelerometer.
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noise, which fluctuates at a much higher frequency
than the sampling rate of the sensors. Within the
— X X electronic components of the sensors, Flicker noise

|
O Comb drive

Torsion——=
ar

£

Sense Axis

Drive Axis

arises, which influences the bias at low frequesicie
Moreover, calibration errors are caused by ermthé
scale factors. Their influences are only visibleaif

(@) Principle [6] (b) MEMS realization [5] input is present. According to Ref. [6], constaigsb
Fig.2 Gyroscope.

Mass m

and white noise are the most important sources for
accelerometer and gyroscope MEMS.

2.2 Reference Frames

| Within this paper all reference frames are
(a) Principle (b) Hall voltage orthogonal, right-handed coordinate frames. Thalloc
Fig.3 Magnetometer [8]. navigation frame and the body frame are the twaamai

Fig. 2b). The rotating axis points into the pajare to frames being applied. They are introduced below. Fo
the local navigation frame N, the origin is the

motion, the distance between the plates of the

capacitor, formed between the green detector amd thstand-pomt of the user. The three orthogonal axes

red mass, is changed. This enables to determine th%Iigned in the directions north, east and dowrhasa
in Fig. 4a. In contrast, the body frame B is alidméth

angular velocity.
Magnetometers measure the local magnetic fieldN€ Pody in consideration. The origin is one poirthe
Therefore, the Hall effect is utilized, as showirig. 3. P0dy, .9. the centre of mass. The x-axis (alsavkno
Due to the magnetic flux densiB/, moving electrons, @S roll-axis) points forward, the y-axis (also kmoas
which constitute the currenit within the conductor, Pitch-axis) points to the right, and the z-axiss¢al

are shifted towards the upper and lower plate, thuknown as yaw-axis) points downward (see Fig. 4b).
generating a Hall voItangH. For our considerations, the origins between both

For positioning three mutually perpendicular sessor frames are always the same.
are necessary, respectively. In the following, téren
accelerometer, gyroscope or magnetometer will away
denote such an entity, respectively. Moreover, ras a In this subsection the relationships for coordinate
IMU (inertial measurement unit) we specify an gntit transformations are summarized. Proves can be found
containing accelerometer and gyroscope. in Refs. [4, 9]. By means of*yy a vectorV is

In Ref. [6] a thorough analysis of different errors denoted within the coordinate frameéA . The
sources, which affect the performance of MEMS representation of this vector in another coordinate
sensors is given. The main error sources are: frame B, i.e.By, can be accomplished with the help

* Constant bias; of a coordinate transformation.

¢ Thermo-mechanical white noise;

* Flicker noise; V= C’? Bv

* Calibration errors. The transformation matrix Ci is the DCM

The constant bias is the average output value, whedirection cosine matrix), where the element in thth
no input quantity is present. Itis the offset gevtn the  row (i =1,2,3) and j -th column (j =1,2,3) is the
true value. The sensor output is perturbed by whitecosine of the angle between the i-axis of tAe frame

2.3 Coordinate Transformation

©)
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coordinate transformation, above all Euler andlles,
rotation vector and quaternions. Since the first tw
suffer from ambiguities [9], i.e. the gimbal locks,
guaternions are frequently applied for dead recigni
Compared to DCM, quaternions consist of only 4
elements instead of 9, reducing computational
complexity. However, the interpretation of quatensd
is more difficult.
. Quaternions are hyper complex numbers with four
| components [9]
(a) Local navigation frame

a=(wxy, 2 ©

where w, x, Yy and z are all real numbers. It can
also be written with the primitive elementsj, €

x=Forward, Roll

. . 9
q=w+xi+y+ 2z ©)
or as a sum of the scalav and a vector(X, Y, 2)' :
_ T (10)
q=w+(x Y, 2
To distinguish quaternions from vectors, we employ
Gothic characters. Addition of quaternions is
performed for each element. Multiplicatidd of two

z=Down, Yaw y=Right, Pitch

(b) Body frame quaternions is based on the definition of the
Fig.4 Referenceframes[9]. multiplication for the primitive elements, i.e.
and the j-axis of theB frame [9]: idi= 3 0j;=¢e0¢€e=-1
G, G, Gy ij=—501=¢
Ca=|Cy Cp Cy ) yoe=-t0j =i (11)
Gy G Gy tUi=-10¢t=
The inverse transformation can be realized by For arbitrary quaterniony =W, + X;i + Yoj + Z¢
Ay = CAfY (5) anq q, =Wl+Xli+.ylj+ zt thc.e r.nult.iplication is
B defined by applying usual distributive laws and
where [9] considering Eqg. (11), i.e. [12].
CQ — (Ci)T (6) q,Uq, = (W, + Xo? + yo? + 7f)
| 0 Wi+ g+ 2)
Hence, for the transformation between body frame - (WW, — %%~ Y% Y~ % 2

(12)

B and local navigation frameN the following
equation applies

+ (W0X1+X0V\{+ Yoi~ % )Di
(7) + (WOyl_XO%.-F %V\.{-'_ %).9)
t Wzt x Y%~ Bt 3 Wt

In addition to the DCM, there are other methods for Some further definitions follow Ref. [12]. Let

Nv=CJ (v
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gq=W+X+ }j+ Z be an arbitrary quaternion. Its stance phase lasts abd@ft% of a full gait cycle [10].
conjugate |t‘| is defined as According to Fig. 6 this full cycle is also denotesla

. . 13 stride. In turn, a stride consists of two sin St
=W i yi— # (13) glep

3. Approachesfor PNS

and the norml| [ as
The generic term Dead Reckoning denotes
”CIH=\/W2+X2+YZ+ZZ ¢ techniqugs that calculate position upgates from
A quaternion q with ||q|[=1 is called a unit measuring the change in position. Within this secti

quaternion, denoted K. The product of two unit two fundamental approaches are introduced, i.e. the
quaternions is again a unit quaternion [11]. INS (inertial navigation system) and the PDR
Quaternions with first component zero are (Pedestrian dead reckoning).
characterized as pure quaternions. As an example, 1 |NS
vector y[JR® can be represented as a pure

S INS can be classified into stable platform systems
quaternionb, by

and strapdown systems. For stable platform sysadims
_ T _ Ty, = (15)

v, = OVv) =0V v, ) v=(4,\% ’\éjr the sensors are mounted on a platform which isyawa
ealigned to the local navigation frame by using gafsb
and motors. Due to their mechanical complexityythe
are not utilized in any mobile device. Therefordha
L;(v,) :EIDUp 0g” ( following, only strapdown INS are considered. For
these systems, all sensors are directly mounted on
rigid body as shown in Fig. 7. In contrast to stabl
platform INS, the sensor data are provided withia t

pure quaternion®, [11]. Specifically, let E[NhB
. . body frame and need to be converted to the local
denote the coordinate transformation from the body

L navigation frame. A flowchart for determining the
frame to the local navigation frame. Then a vecigr o _ _
. . position with the help of a strapdown system isvgho
in the body frame, represented as pure quateFmg)n

in Fig. 8 and explained below.
B B B T
Let ("w,,”w,,” W,) represent the angular

Unit quaternions can be used to perform coordinat
transformations. Let the operatdy; (D] be defined as

where E| is a unit quaternion, then Eqg. (16
characterizes a rotation of the veatgmrepresented as

is transformed into the local navigation frame b#][

N (17)

- B ~[7
b, =qy_gU nquNkB

» velocity measured by the gyroscope. According to Eq

(15), the associated pure quaterni%mp is
The inverse transformation is accomplished by [11]

(18) Bmp — (O,B WX ’B Wy ,B WZ )T (19)

% =g DNUp DaghN
= Elﬁgs OoN b, O EINF 5 Since quaternions provide a linear means for
manipulating rotations, the updated quaternion
representing the coordinate transformation between
body frame and local navigation framﬁg\,_B can

2.4 Gait-Cycle approximately be written as Ref. [13]
C|NkE;:ElNkE(,"'C.lNkBDY[ (20)

Conversions between DCM, Euler angels, rotation
matrix and quaternions are listed in Ref. [9].

The human gait cycle is shown in Fig. 5. It corssist
of two alternating phases. In contrast to the swingWhere [13, 14]
phase, the stance phase specifies the intervahichw
the foot in consideration is touching the grountle T

1 1)
L INpI ‘E[aNkEg DBmp
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NEW

A GAT Inial Loading  Mid- Terminal Initial  Mid-  Terminal acceleration Nalin is then double integrated to

TERMS Contact Response stance Stance Preswing Swing  Swing  Swing

determine the new positiohy , where the former
position Nro and velocity NVO are utilized:

CLASSIC Hee\ Foot Midstance ‘Hee\ Toe Midswing Heel
B GAIT  Stike Flat off off Strike

TERMS Acceleration | Deceleration NV =N V. + N a‘l [At

STANCE PHASE —-|~—SWING PHASE 0 n (24)
c 0 10 20 30 40 50 60 70 80 90 100 1
% of GAIT CYCLE N _N N 2
Fig.5 Human gait cycle[10]. r="r+ Vv [At +§ O Qin QA'[)
STEP C<> Accelerometer and gyroscope sensor errors directly
influence the position result. These errors accataul

' over time [6]. In Ref. [17] a square trajectorgét as a
m STRIDE | test Iscenarlo Zp-plyll;?c trﬁ sn:plehINS proces;.w;l.'he
Fig.6 Step and stride[10], resu ts_reporte in Ref. [ ] show uge_errors, i
are mainly caused by following factors. First, tuéhe

= gyroscope errors, the turning angle at each cdmer
. ' ' larger than 90 degrees. Second, the estimatedchlengt
each straight path is greater than the real lefidtis. is
' due to accelerometer errors caused by accelerometer
. ' bias in both the stance and swing phase [17]. It is
Sccelerpmeter reported that the estimated total travelled distdaca.
83.5m, compared to 40m real path. Below, methods fo

Fig.7 Strapdown INS. alleviating these errors are presented.
— 3.1.1 Zero velocity UPdaTe (ZUPT)

°”e”r“°” In addition to the errors just stated, there istlago

Body mounted Orentation il velocty source. Due to the noise from the gyroscopes, the
Gyroscope computation and position . . .
I I computed orientation deviates from the correct

Body mounted| [ coordinate || Gravity Velocity, range] Position orientation. In this way, parts of the gravity campnt
Accelerometer transformation removal calculation

Fig.8 Flowchart of the strapdown INS are taking into account as linear acceleration. fue
the errors accumulating over time, huge errorgtier
position arise [15, 16]. As can be seen from Fjgh&
velocity of the foot should be zero, when it touchiee
- ground, i.e. in the stance phase. With the he UR T,
Hq N_B” the velocity is set to zero at this point of time,
After accomplishing the orientation computation alleviating some of the errors. For best resuiis IMU
with Egs. (20)-(22), the accelerometer measurementshould be mounted on the foot. Below the conditions
Ba are transformed in the local navigation frame Catancer 10 Csances for the identification of the

After this incremental update, the length will et
unity any more. Therefore, normalization is perfedn
(22)

~ N
L INDIS

according to Eq. (17) stance phase are described according to Ref. [17]:
_n A (23) M agnitude of acceleration
Nap _qN&BDBaquflkB g .
During the stance phase, the magnitude of the
where Bap is the pure quaternion form dfg . acceleration®a, for each samplek is supposed to

Afterwards, gravity is removed. This linear be the gravity, i.e.
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min,acc max acc

o Jtue ifTH,, . <fa kTH
Stance,1 false, otherwise

(25)
where

Pakya+ta, fa, @

Since gravity is contained within the acceleration

TH @7

min,acc

= 9.3m
S

TH

max acc

:=10.

A

Variance of acceleration

305

M agnitude of angular velocity
The magnitude of the angular velocit‘§/\,\/k is

supposed to be zero at stance, i.e.

true if Pw, KTH,, ., 2
CStance3: - i
~ |false otherwise
where
33
Pw kg o w e,
The threshold is set to
(34)

THpg g =1.5739(

ZUPT requires the IMU to be attached on the foot.

Moreover, at stance the variance of the acceleratio However, in the medical and commercial field, the

shall be close to zero. Instead of the variancégiwis

sensors are often mounted on the ankle, where the

unknown, in Ref. [17] the second sample momentyelocity at stance is not equal to zero, sinceleleis

2

K ace is used to form the

about the sample meafhM
following condition

if®M2 <TH

k,acc

true, max M.,

Cs

tance, 2™

false, otherwise

(28)
2

The sample moment about the sample mEMKaCC

is determined as follows [18]

1 k+n 2 (29)
BM 2 _ ( Ba |-Pa D
k,acc 2n+1kzn | kl | k

where |° a_| is the sample mean for th@n+1

not at rest. Hence, the ZUPT stance detection ¢do@o
working properly. To deal with this, an extensi@n i
presented in Section 5, which is called non-ZUPT.

3.1.2 Summary of INS

Table 1 is a comparison of different INS techniques
As can be seen, ZUPT can improve the performance
significantly. Moreover, an INS based on the
non-ZUPT approach is listed. Since ZUPT and
non-ZUPT are enhancing the accuracy, we employ
both in our PNS.

Tablel Evaluation of INSalgorithms.

i . . [17] [17] [32]
sampling points, I.€. . Technique Basic ZUPT-aided Non-ZUPT-aided
= 1 & (30) High (2.9%)
B —
" a |= 5 +1Z Fal Accuracy  Low (108%)5.0%in  High (3.6%)
N+l Ref. [21])
In Ref. [17] parameten is setto 15. The threshold Robustness  High Medium Low
is defined as Performance Low Medium Medium
m’ (31)
TH , =1.5— 3.2 PDR
max Macc S4

Eq. (29) shall represent the variance for the sampl

Another approach for a PNS is PDR. Here, for each

Since the mean is not known, we recommend using thetep the process consists of three stages: (a) step
sample variance instead, since the expected vdlue aletection, (b) calculation of the step length aoy (
the sampling variance equals the variance of theestimation of the orientation. Continuously repegati
underlying population [18]. For the sample variancethese steps allows determining the walking trajgcto

the denominator in Eq. (28) must be changed to 2n. In contrast to double integration, step recognitioty
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generates two-dimensional position results. Below,in detail.
approaches for step length estimation are sumnthrize
In Ref. [19] the vertical acceleration is used to
estimate the step IengtSl.Est according to Accurate orientation plays an important role, since
Sl = KQ/avert o v (35) incorrect _orientation_ causes parts gf the grawviteti _
acceleration to be interpreted as linear acceterati
in which K represents a calibration value for resulting in huge errors. The problem to estimhte t
pedestrians  and@eimax and yenmin  are the  orientation was first formulated by Wahba [24]. Téhe
maximum and minimum values of the acceleration inthe DCM Cg between a reference frame R and a body

4.1 Problem Description

one step. frame B is determined by using co-registered vector
Another algorithm based on a biomechanical modelFor this, a least-square loss functiob()] is

is described in Refs. [20, 21]. Here the accelenadn  minimized, given as [24, 25].
the PCOM (Pedestrian’s Centre Of Mass) is measured, (39)
which is the point at the back near the fourth lamb By 1 B}
p L(CR)_EE(aiDFVi_CR Vi |2)
vertebra [22]. The estimated step length is catedlas i
SL. = KR/2Ih- 7 (36) Here, ®v, |§ a set of unit vectors. measured .|n the
body frame, "v, are the corresponding vectors in the

in which | is the leg length of the pedestrial,is a  reference frame and thé@ denote non-negative
calibration value andh is the vertical displacement of weights.

the PCOM in one step. The PCOM is ascendingind  For the solution of this problem, multiple algorith

can be described as have been proposed, which can be classified into
To+Tase[ Tot Tasc , (37) deterministic and optimal ones [26]. For the
h= Qert, pcomdt dt deterministic algorithms, the attitude is compubsd

T Te . .. .
’ ° using a minimal set of measured data and solving

non-linear equations. In contrast, the optimal
techniqgues apply more than the minimal set of
measured data and minimize a cost function. Below,
some algorithms are presented.

The TRIAD algorithm is a deterministic algorithm

Here T is the ascending time of the PCOM and
Aert, peorr IS the vertical acceleration of the PCOM.

Another empirical algorithm is presented in Ref.
[23], where the step frequencyfStep and the
pedestrian heighh are utilized. The estimated step

length is as follows [27], where two measured non-parallel reference
Sl = hi{alf e+ B+ ¢ (38) vectors are normalized and combined to construet tw
where a, b and c are calibration parameters, triads of orthonormal vectors. In contrast, QUES@n

tep

which are obtained by a complex training procegssus
a short-time Fourier transform.

Table2 Evaluation of step length estimation algorithms.
Eqg. (35) [19] Eq. (36) [22] Eq. (38) [23]

Table 2 summarizes these algorithms. The high error i . i ~ Fourier
) ) ) Technique Empirical Biomechanical® ¢
for the second variant is caused by placing the@sn 20,504 fanstorm
. 0
in the pocket and not on the PCOM. Accuracy 6.3% (5.0% in Ref. 2.5%
[21])
4. Orientation Estimation Robustness  High Medium Low
Calibration Simple Medium High
Below, multiple techniques are introduced. The efforts
Performance Medium Medium High

Madgwick algorithm, which we employ, is described
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optimal algorithm where Davenport's g-method is has one component along the north direction. Itrwas
applied to find the optimal quaternion which is a component along the east direction. Moreover, due t
transformation of Wahba’s loss function [26, 2. | the curvature of the earth, the orientation of the
addition, there are many KF (Kalman Filter) based magnetic field can be directed into the earth, Benc
approaches. Here, accelerometer and magnetometefiere is also a component along the vertical divect
data are fused to alleviate the drift from the ggapes.  The inclination specifies this angle between the

As an example, a quaternion based EKF (Extendeq,qrizontal and this field. It is approximately 65n
Kalman Filter) is presented in Ref. [28]. An altatine Dresden, Germany [31]. Hence,

to the KF is the CF (Complementary Filter). Compare N A T (43)
to KF, it is simpler and more effective. Examples i M =[M oM

Refs. [29, 30] present that the human motion tragki  Additionally, there is a deviation between the
using EKF needs to be captured at sampling rateghagnetic north and the true north. This angle, tieho
above 512Hz, which exceeds the maximum samplingys declination, between lines from the observer to
rate of 200Hz of Android-based devices to be used i hagnetic and true north is small for locationsffam

this paper. In Ref. [7], the Madgwick algorithm is e North Pole. During the Madgwick algorithm we
presented, which will be used in our system. Ilais assume the declination to be.0

highly effective CF, utilizing the gradient descent Note, that fg and f_ are functions off,_g .

technique. It employs accelerometer and magnetcnmetebependmg on the availability of the sensors, eitﬁg

data to alleviate the drift of the gyroscopes.st i o f o photh should be minimized to determine the
presented below.

north? vertical]

orientation. To encompass all cases we deffhas

4.2 Madgwick Algorithm [7] [f] incorporating gravitation:
g ) .
Let NG denote the normalized vector of the f= field only (GF) )
gravitational field in the local navigation framedalet fy | incorporating gravitation:
Bg be the associated measured field in the body f.|" and magnetic field (GMF

frame. Since gravitation is directed into the eaMitS and our object is to minimiz& . According to Ref. [7],

only exhibits one vertical component, i.e. the gradient descent algorithm is applied, which is

"G=[0,01" (40) iteratively performed:
According to Eq. (18),Né can be transformed _
_ _ n_g =0 Hi——"7, Statiqy,
into the body frame. Hence, the dlfferencég N N ||U || N (45)
between the field, transformed into the body fraamel Here, 4 is the step S|ze,E|N_Bb is the initial
the measured field can be written as orientation, which could be determined with thephaf

~ - ~ ~ a magnetometer.f,_ represents the value of in
f. =@ 06 O =N 41 k
g (G p AN B~ 0 P (41) each iteration, i.e.
N g N~ : ~ ~ ~
Whiere Qﬁp aild g, are the pure quaternions of [(QN B“DN@ 04, )_ngl’ GF
NG and g . Analogous, the differencef ¢ ~ NA N
between the magnetic field M and the measured 'k~ (qNFBK-l 07 &, Uay. 5.0 85 GMF
counterparte 5, in theAbody frame can be written as (CIN B N gmp DEIN._ 3<—1) Nm
fo =@ 0" M, 04, 9-" ™, (42 (46)
In contrast t&!G , the earth’s magnetic field' |vj Instead of minimizing f or f, directly, the
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minimization of the squared error los$, is
employed which is written as

(47)

1
Fk ZE fkT o fk
Applying the chain rule, it can be easily showrt tha
— (48)
R = JIK o f,

where Jfk is the Jacobian of, .

The application of Eq. (45) is the first part okth
Madgwick algorithm. In parallel, the orientation

Building up an Inertial Navigation System Using Standard Mobile Devices

U F
“lord
Measurements of the magnetic field in the vicioity
electrical circuits or metal structures can lead to

significant errors in the inclination. These errocas be
made visible by back-propagating the measured
magnetic field in the body frame into the local
navigation frame N, according to Eqg. (17), i.e.

(52)

qN‘_Bﬂj = qN‘_ B<—l,est

(53)

N~ —
n,, = 0o®

q N« B<—1,est D q N 3&1 est

determined with the help of the measured angular

velocity from the gyroscope is available (see 2g)).
The application of Egs. (20) and (21) for time step
reads

ar @9

ANcBw = UNC B o . Beo

where

B 1o (50)

[aN B.(lest P

In. Bo

Here, we have used the subscript to distinguish
the orientation determined with the help of theldag
velocity from the orientation determined by the
gradient descent algorithm of Eq. (45). For theetat
we will use the subscript/ in the remainder of this

Ideally, the direction ofNimp and ﬁk should

match for every time stel. However, magnetic
distortion produces inclination errors, which aishle
as non-zero components in east direction, i.e.

N 1’:lp,k = [O’ Nnonh k? N (54)

east K vert I]

These effects of erroneous inclination can be
reduced by simply rotating the magnetic field vecto
about the z-axis in such a way, that the east caemio

vanishes. This quaternion

NDp _[0 \/Nnorthk Nias;k'o’Nvean

can then be used in place Hﬁm within the next

(55)

paper. Both orientations are combined by means of &eration, e.g. in Eq. (46).

CF to determine the final orientation estimator:
IN B ey ~ yidy. By +1-y)d BW’OS y<1

(51)
We use the index€St to specify this final
orientation estimate.) is the weight of the filter.

Generally, the application of Eq. (45) requirestipié

iteration steps before applying the CF in Eq. (51).

According to Ref. [7], one step is sufficient, Het
convergence rate is greater than or equal to teeofa

Table 3 broadly summarizes the aforementioned
orientation estimation approaches.

Table3 Evaluation of orientation estimation algorithms.
TRIAD QUEST

271 7] EKF[28] CF[7]
Magnetic Sensitive  Sensitive  Median Median
perturbation

ImplementatlorSimple Simple Median Median
efforts

Orientation Large Large Small Small
error

Convergence N/A N/A Slow Fast

change of the physical orientation, which can beSPeed

realized by selecting an appropriate value of tep s

size/ . Below, this case is considered. In doing so, the

individual iteratiorsteps of Eg. (45) can be thought of
being timely aligned to the measured angular vBfoci
As a modification to Eq. (45), the CF reséliv g,

is therefore used directly in pIaceﬁnpj_ B,

5. PNS Structure

To benefit from the advantages of both the INS and
the PDR, our system consists of two sub-systems as
shown in Fig. 9. For the INS, a smartwatch is erygio

which is attached to the ankle. In contrast, a
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smartphone is used for the PDR to be held at handaccording to Eq. (56). The vector part of the resul

Both subsystems will be detailed in the subsequenty

paragraphs. This is followed by the descriptionhaf
fusion process for the final output.

5.1INS

Below, the general form of our INS is illustrated.
Afterwards, methods for improving the accuracy are
described.

5.1.1 INS Structure
Fig. 10 shows the structure for our INS, which is
mostly equivalent to Fig. 8. Likewise, the undertyi
mathematics is mainly identical to the ones in iBact
3.1. The only modification is due to the Madgwick
algorithm, which requires accelerometer data in
addition to gyroscope measurements to estimate th
orientation. However, we have modified the Madgwick
algorithm, tocope withmagneticdisturbances.The
details are given below in Section 5.1.2.

...................

——

Step
recognition

PNS

Step
recognition

Fig.9 System structure.

Initial
orientation

Orientation
computation with
(impr. Madgwick)

l

Coordinate
transformation

Body mounted
Gyroscope

-

Body mounted
Accelerometer

Initial velocity
and position
| | Position

Velocity and

Gravit
4 range calculation

removal

-

Fig. 10 Flowchart of INSin our PNS.

After performing the improved Madgwick algorithm

a,, specifies the acceleration vector in tHhé

frame, denoted a?%ak . Afterwards, gravity is removed
as shown in Eq. (57). The velocity and the range ca
then be determined with the help of Egs. (58) &&). (

Vo, Zdy.g 0%, 0% o (56)
o, = a-"G (57)

“v, =Nv+Va, At (58)
(59)

§ I’k =" rk—l + " Vk—l [At +% m a'Iin,k mAt)z

5.1.2 Upgrades

For improving the accuracy, we employ two
techniques, i.e. the ZUPT method from Section Bd. a
another approach, denoted as non-ZUPT. Both are
described in turn. However, firstly an enhancedicer
for detecting the stance phase is presented, vidtble
basis for both methods.

Stance Phase Detection

Fig. 11 shows the conditions for detecting thecgan
phase.Csince1 10 Coiance.s (@ccording to Ref. [17])
have already been described. However, for incrgasin
the precision, we have added conditidag,,c. » and
Cstance,s @s we will show in our measurements. All
conditions need to be fulfilled simultaneously, ahis
characterized by the logical AND.

IC stance,1 - Magnitude of acceleration

stance.2 -+ Variance of acceleration

|c

|C stance,3: Magnitude of angular velocity

Stance Phase
ND ,
Detection

|Csum,,: Variance of angular velocity

: Angular velocity along z-axis

L

lc Stance,5

Fig. 11 Logicfor detecting the stance phase.

Cstance.s Shall express that at stance the variance of

at timek , the measured acceleration from the samepe angular velocity is smaller than a threshold

time, characterized as a pure quaterﬁimpk, is first
transformed from the body frame into tid frame

THm 2 . Instead of the variance, which is unknown,
% Mgyr

is

the sample moment about the sample nfiedif .
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employed. ThusCg,ce J€adS

true, if BM? <TH

_ k,gyr 2 .
CStance,4_ i e Moy (60)
false, otherwise

where® M? _ is determined as Ref. [18]

k,gyr
BM 2 :Lf(ﬁw |I-P @ Dz (61)
k, gyr 2n+1k—n k k

Here, |° @, |is the sample mean for th2n+1
sampling points:

k+n

B Fig. 12 IMU attached to the ankle.
N +1Z|B (62)

In most commercial and clinical applications, the Aj f§ AA A)ﬁ '§ AA

IMU is preferred to be mounted on the ankle instafad

on the foot [32]. Therefore, we also have mounked t i  Angular velocity along z-axis

IMU on the ankle in our experiments, as shown in Swing phis Stance phise _
Fig. 12. As can be seen, the body frame is aliguet, R i /A\ f‘\ A |
that the x-axis points upward, the y-axis points in fz / ‘\\ ’ﬂ' 7 & \ f”'\\:\
walking direction and the z-axis points in the diten % o ‘\ [f N \\\ .‘i sl
of the viewer. At stance, the z-component of the ; \ F,' ‘ ‘\\ j
angular velocity shall be zero (see Fig. 13) [33]. '4 \\ / \ .;'
Therefore, we have added a condition in this regard | ad \/

whose necessity becomes obvious in the experiments. ss s 65 TR T s

Time (s)
. Fig. 13 Angular velocity along the z-axis ([33] modified).
_ Jtrue, if Pa,, KTH 0 o 2 63)
Stance,5 false, otherwise The factor% arises, if one firstly determines the
expected time for a full gait—cycl'é'eait,exp for normal

B - B
Here, ~ &, is the z-value of" @, from sample k, . . . . :
K k ] continuous walking, i.e. for assuming successive
and TH ., o, - is @ threshold to be defined. strides:

ZUPT and non-ZUPT method 100

As explained in Section 2.4, the swing phase Gait,exp::E Stance
occupies around 40% of the full gait-cycle for
continuous walking. This time can be measured and i Ts

Thus, the expected duration of the swing phase

Swing, exp is
the criteria for detecting if a stride is not sussiee 40 2
with the previous one, which means that continuous TSwmg exp =0. 40D—Gai,t exp:%Dl' Stance ED]_ Stance
walking is interrupted. Therefore, we set the cbadi If the duration of the swing phasBsying is below
[true, i Tgun, 2 ;/ M (64)  Tquing exp then walking is considered non-successive,
Cosuccessive since a long stance phase indicates that the pé&son

false, ~otherwise standing. In this case, we apply the ZUPT method;

otherwise we use non-ZUPT:



Building up an Inertial Navigation System Using Standard Mobile Devices 311

non-ZUPT, ifCgy i true Orientation Estimation

ZUPT, otherwise In this paragraph some updates to the basic
Madgwick algorithm are presented, which we employ
in our PNS. As explained in Section 4.2, the
accelerometers should only measure the gravitdtiona
acceleration and the magnetometers should only
measure the earth’s magnetic field. Hence, thechasi
Madgwick algorithm assumes that linear acceleration
e.g. due to motion, and magnetic distortions can be

neglected. In particular the first assumption isvadid,

Technique:{

(65)
The reason for this is that the velocity should/dod
set to zero, according to ZUPT, if the person I/ fu
standing, i.e. if the strides are not successiveuld/
the IMU being attached directly on the foot, thesPZa
could be used for every stride. However for the IMU
being placed at the ankle, the velocity will nothggck

to zero, since the ankle can be in motion evehef t especially for the gait of a pedestrian in the gwin

velocity of the foot is zero. Hence ZUPT cannot be phase. As shown in Ref. [34], the linear accelerati
used in this case. Instead, we apply the non-ZUPT

technique, introduced in Ref. [32]. It is presented can reach up to 5% - Moreover, temporary
below.

In contrast to ZUPT, the initial velocity is nottse
zero, but is calculated with the help of Fig. 14hé&f
the pedestrian is at mid-stance (please see Fithese
exists an angular veIocitwat approximately
tangential to the ground surface. Referred to E&j.it
points in the direction of the z-axis. The veloafythe
IMU in the body frame can then be computed as:

high-intensive magnetic distortion also affects the
performance. Inspired by Ref. [35], we thereforeeha
added some conditions for the usage of the algorith
Firstly, the Madgwick algorithm is only applied at
stance, where the linear acceleration should ba at
minimum, otherwise the gyroscope data are used for
determining the orientation:

if stance phase
detected
This means the tangential velocify, of the IMU is Gyroscope, otherwise

v, =% e, x"d (66) C, _ | Chadgwicks

rientation —

the cross product of the angular velocity and the
rotation moment arnfg , which points from the
ground to the IMU.B\/t is then transformed toNvt

(67)
Furthermore, if the magnitude of the measured
magnetic field |B m | and the magnitude of the
reference earth’s magnetic field b, | (calculated
by the World Magnetic Model [31]) are greater tlaan
thresholdTH,.y , the magnetic field is neglected
IMU because of present magnetic distortion. This camdit

is stated below, where a typical value is given as
..... e, TH ., =30uT.

i C_[GF. i IPmI- by #TH.,
d Madowek ) GMF, otherwise

according to Eq. (17).

(68)
Here, the abbreviations GF and GMF from Eq. (44)
were used. The full process for determining the
orientation is illustrated in Fig. 15. The respeeti
Fig. 14 Tangential velocity at mid-stance. equation numbers are listed under each block.

B

Wt
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Diamond symbols specify selections according ta Eqsalgorithm. The vertical acceleration is then simiblg
(67) or (68).EINFBK‘GS[ is the final output at time step k. fourth component of this quaternion. The remaining
Dotted lines designate variables which become valid constantK in Eq. (35) is obtained individually for
the next time step k+1. each user via a calibration process, e.g. by walkin
. distance of 5m. Fig. 16 shows the vertical accétara
Mok @ Aep, ., ' for a walking sequence. The strides are detectéu wi
the help of the techniques described in Section25.1

B o~ B

Wy kAN By cut

Magnetometer 2q. (53) l GF g
,- G

[U‘ Nuortn i+ Nease.: 0. N "] ; and are separated by red lines.
. ) — ekt 5.3 Fusion of INS and PDR
Ok [ INeBi_1coe ~ HIVET
e B Table 4 compares the characteristics of the PDR and
Bro, i—~lane s, o . Hinens, At INS. Since the update rate of the PDR system is low
Groscone faves, . ; and the technique for calculating the step length i
Linep, .. ©5w, w simple, the accuracy is worst for the PDR. Howelter,

e T can be used complementary to the ZUPT/non-ZUPT

€5 Coriintation T o] INS. Due to the good performance of the INS, th&PD
Fig. 15 Processof the Madgwick algorithm ([7] modified).

Acceleration along vertical axis
17

5.2 PDR

15

In our PNS the IMU for the INS is attached on the I
ankle. In addition, another IMU is utilized for tR®R. 2 13 /0" \ﬁ /\
I

=

This IMU constitutes a smartphone which the user

celeration (m/sz)

holds in his hands. The main error source for & iN A w( \ / U
small measurement errors which are accumulated ove < ¢ W I\

time. One way to alleviate these errors is by using | \ \ L \\{
. . V
ZUPT and non-ZUPT. Another alternative, described
below, is to apply a PDR system in parallel, tatitine 555 6 &5 7 15 8§ 85 9 95 10
Time (s)

errors. Fig. 16 Measured magnitude of vertical acceleration in a

Different PDR algorithms were described in Section walking sequence.
3.2, especially in Table 2. For our PNS, we have _

lected the Weinberg algorithm [19]. Although s Comparison of PDR and INS.
selec ] } g_ 9 ) ' 9" [Characteristics] PDR INS
Renaudin’s algorithm [23] is more precise, the shess Proced Simple Complex

. . . . . . roceaure . . .
of Weinberg’s algorithm is higher and the calibwati (stride length) (double integration)
. . . . _ Medium High
process is easier. Besides, in Ref. [36] it is shdvat (Requirement: (Requirement:
the Weinberg’s algorithm performs best, if the INU ~ |Accuracy accurate step accurate stance-phase
. . . detection and detection and

mounted on the waist or held in the hand steadily. orientation orientation)

To determine the vertical acceleration, required in|Usage Flat (2D) Terrain (3D)

, . N . . i
Eq. (35), firstly the acceleration @, at point K in Placement ;'aer?g_’h‘gﬁ}'lst Foot, ankle, leg
the N-frame is calculated according to Eq. (17). Sensor quality| Low High
N - B ~[7 Low High
ap,k —Aqn. B O ap,k O In. B (69) Update rate  |(update when step |(sampling rate of
detected) sSensors)

where aNFBK is the result from the Madgwick
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system is applied simply to modify the stride ldngt
calculated by the INS. Therefore, we are employing
another complementary filter, i.e.

Mex=a 01, (st @-a)0r, o O<as<l

k,est

(70)
where" I'.est 1S the estimated length of the k-th stride
and " e ins OF N I'« por IS the estimated length of the
stride by the INS or PDR. Agaia, is the filter weight.

Fig. 17 illustrates the full process. In accordatwce
Table 4, we apply for the INS the IMU of the
smartwatch, which is attached on the ankle, anthfor
PDR the IMU of the smartphone, which is held in the
hand. The fusion takes place in real-time and is
performed in the smartphone. For this reason

313

smartphone. Tables 5 and 6 detail the specificatidn
both entities. The access to the sensors as wéflleas
communication between both IMUs is performed with
the help of the API (application programming
interface). Finally, the evaluation of the senstaya is
performed in MATLAB for the experiments, whereas it
would be implemented on the smartphone for a real
user application.

The sensors are accessed via the Android API. There
are two types of sensors: raw sensors and synifoetic
virtual) sensors. Raw sensors directly provide the
outputs of the MEMS sensors, whereas the synthetic
sensors perform some form of preprocessing, filteri

._or fusion before returning the data. For our PNS we

employ raw sensors only.

a

permanent Bluetooth data connection between botiTable5 Specification of the Sony SmartWatch 3.

entities is maintained.

Smartphone

Magnetometer
I Gyroscope F—hﬁg

tation
watch)

IZUPT/non-ZUP

Fig. 17 PNS process.

6. Experiments

In this section the set-up of the experiments is
introduced firstly. Afterwards, the results are
presented.

6.1 Experimental Set-up

After presenting the hardware and software utilized
details regarding sampling times, configuratiomper
metric and scenarios are described.

6.1.1 Hardware and Software

Operating System | Android Wear 6.0.1
Google Play Servicggersion 9.4.52
Quad-core ARM Cortex A7 1.2GHz
Processor
CPU
RAM 512MB
Radios 802.11 a/b/g/n/ac Wi-Fi, Bluetooth 4.1
Accelerometer, magnetometer,
Sensors
gyroscope
Dimensions 36mmf L0mmX 51mm (74 grams)

Table6 Specification of theHTC OneM8.

Operating System

Android Wear 6.0

Google Play Servicg

gersion 9.4.52

Qualcomm MSM8974AB Snapdrago

=

Processor 801
RAM 2GB
Radios 802.11 a/b/g/n/ac Wi-Fi, Bluetooth 4.
Accelerometer, magnetometer,
Sensors
gyroscope
. . 146.4mnX 70.6mmX 9.4mm (160
Dimensions

grams)

6.1.2 Alignment of Sampling Times

We have configured the IMUs to have a maximum
sampling frequency of 200Hz. Unfortunately, the
sampling times of the accelerometer, gyroscope and
e not synchronized. Hence, to timely

magnetometer ar
align these sampl

the raw output data of the sensors. This enables to

es, we apply a linear interpaidtio

For our measurements,_we employ the Sonysynchronize the sensors within a single IMU.
SmartWatch 3 together with the HTC One M8 Nevertheless, we are employing two IMUs, i.e. ia th
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smartphone and in the smartwatch. Thus,Table7 Constantsdefinitions.

synchronization between both is required. We solve Constant Value
this issue by performing a calibration prior to the " 33
measurements. In our experiments, the user is ¢ 0.49
. . . . X THmin,acc 9-3fy
requested to jump twice at the beginning. This amoti S
. . . THmax acc 10.3ny
is recognized by both IMU and enables to syncheniz H 15 55
the time. max Mece ' mé‘
6.1.3 Configuration THmax gyr 1.5vag?
Table 7 summarizes the parameters being used in' " max Mg, 0'6“‘%

our experiments. These were determined with the hel THmaxgyz  1.029
imi = +1=
of preliminary tests. We sat= 33, thus 2n+1= 67 05, if0.8<

points are considered for calculating the variasfabe a I 1, PORI
1.0, otherwise

N
I
[ 1, ins | <12

acceleration and angular velocity. For our sampling
frequency of 200Hz this is approximately 30% of the Table8 Scenariosfor the experiment.
time period of one stride. The other parameterewer Type Specification

configured with the objective to avoid incorrecrste Type | Walking on straight line with break in thedale.
hase detections Type Ii Walking on straight line with break in the middle,

P ) and reduced walking speed for the second part.

To circumvent PDR outliers, we have included a Walking forward on straight line with break at

Type Il reversal point, then turn around and walking back

on straight line.

Walking on rectangular trajectory with stop to turn

in corners.

Walking on rectangular trajectory without stop to

turn in corners.

separate condition far . This will be described in
more detail in Section 6.2.3.

6.1.4 Error Metric

To quantify our results, we measure the errorikaat
to the TTD (Total Travelled Distancelrp [15].

Hence, our relative erro€ is defined as
Ar The results for our PNS for each of the five sciesar

(71) from Table 8 are presented in turn. For type litthe
initial orientation is specified prior to the exprents,
to exclude influences of magnetic disturbancess&he
influences are then considered for type IV and type
6.2.1 Type |
In the first experiment, the scenario is a strajgth
of 51.1m. In our measurements, the test personsvealk

Ar 2\/ (Ar )2+ (A )? (72)  an average speed of 1.% and stands still in the

Type IV

Type V

6.2 Experimental Results

€p DTTD
where Ar is the absolute position error for the end
point of the walking trajectory in the local naviga
frame. Utilizing Ar,,, and Al as differences in
north and east direction, for two-dimensional

considerationsAr reads

6.1.5 Scenarios middle for around 8s. Then, the pedestrian consinoe
We perform five different types of experiments, as walk to the end of the path. Already within thisrwe
listed in Table 8. These are specified in moreitlieta  simple scenario, the ZUPT and non-ZUPT methods are
the next subsection. employed for the INS. As an example, ZUPT is uged a
the beginning and directly after the single stopd a
non-ZUPT is used otherwise.
For the smartwatch, the magnitude of the
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acceleration is illustrated in Fig. 18a. First df the because of ZUPT, which is only used when the dride
waiting phase between 24s and 32s is visible, wiere are non-successive. In all other cases a smalliymsi
magnitude of the acceleration is equal to the ¢yavi value remains due to non-ZUPT.

(= 9.8ry2 ). As an illustration, the data between 5s s i mwinhnssianins

and 10s i: enlarged in Fig. 18b to illustrate sesive j w “ j ] ] m“ J,Ml{‘I‘JIHwLHHIP’}U,L,J“tlI\J*IJ*“*]L{\' .

walking. The swing phase is marked in green and the- S ‘ *

5 10 15 20 2‘5 30 35 40 45 50 55 60
stance phase in red, respectively. These are segara Time (5)
(a) Full time span

30—

and Cgnee 5 (EQ. (32)). The black rectangles denote g;;
wrong detections of stance phases, when only thesz's .
three conditions are applied. 2 I | I 0]

Fig. 19 illustrates the associated angular velocity ~  ~  ° % 7 nme e

Just as bef the st f1h destrian ideisb (b) Selected extract
ustas betore, the stop ot the pedestrnian ISig|smcee Fig. 18 Measured magnitude of acceleration.

by COﬂditions(:Stance.l (Eq (25))1 CStance,Z (Eq (28)) m—— ,:Ma’:fi‘"f ofnﬂ:‘vlvmlifm

the angular velocity stays arourﬂrag/ between Magaicude o ngular elociy

_ ; ”

u,w

24s and 32s. Again, the detected swing and stanc 4t |\ “ J ‘ ‘
phases are marked, using only the aforementloneuz “l “ ‘ ”M }!
| . \

| ﬂ lﬂ“ ”

L

t
conditions Cgncer s Cstancez @Nd Copance.s - %

Tlme(s)
addition, wrong detections of stance phases are (@) Full time span

indicated by black rectangles. Fig. 20 shows the
associated angular velocity along the z-axis, where

Magnitude of angular velocity

have included the black rectangles for convenietice. P 1 i
is obvious that the angular velocity along the séx &) [}, | il
ra '05 T i3 - T £ ik 75 S T iRy ] 0
approximatel 9/ . Hence, these wrong stance Time ()
P yO S 9 (b) Selected extract

phase detections can be ruled ougy, . s Similar ~ F19-19 Measured magnitude of angular velocity.
COﬂSIderatlonS Can be made %ance’4 ThIS jUStIerS .r\ngulnrwlucityalungka\it

26
the introduction of the additional conditions imFil1 £ [l | . |
o Y £ Il yu U!.r wm | , ,n.',}r,g".,h_h A
for our PNS. For the condltlonggance,lto Csiance s £ — 1 il i L o
Fig. 21 illustrates the detection of the stancesph@ihe :: ! HAH ‘. . ,‘ ‘ REARRARRRRRARARRAY
<% 10 15 20 25 30 35 40 45 50 55 60

individual steps are clearly separable. Moreover, n Time (5)

detection errors occur. Fig. 21b enables to agbess (?)g'.:u".t'qugpan i

relation between the duration of the swing andcgan

phase. In respect to the picture, as a rough etstjriee 'z' N N N

strides should be considered non-successive if thé- N i

‘s 55 6 65 7 75 8 8.5 9 95 10

duration of the stance phase is longer t|3?il2 times Time (5)

. .. (b) Selected extract
the length of the swing phase, which is in accocddn Fig. 20 M easured magnitude of angular velocity along the

Eq. (64). The magnitude of the velocity is shown in z-axis.
Fig. 22. Although it is hard to see, the velocity &

6y
4|

r velocity (rad/s)

new stride is only (% at around 5s and 33s. This is
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Detection result of stance phase
%1 T T TR T T ———T T T R H—
2 |
2 [
EN [ | |
5 10 15 20 25 30 35 40 45 50 55 60
Time (s)
(a) Full time span
Detection result of stance phase
g1 [ g
E
g
£ | ! |l | I |
5 75 10 125 15 175 20
(b) Selected extract
Fig. 21 Derived swing and stance phase.
Magnitude of velocity
35
g3 TN (1 | i
Eas itf |4 ‘ | 1|
2 2 | | ‘:‘\\“ [ IR \HJ“
,gl.sl | LT [ LT \
os!|l\ ‘\" ‘x‘i‘,"‘."‘, i VWUV U
%" "0 15 20 25 30 35 40 45 S0 55 60
Time (s)
(a) Full time span
Magnitude of velocity
35
z 3
Eas
g 2
.-E 15 [
o1 \ ) I | 1 | \ | \ | \ |
Z05 \ \ \ \ \ L7 it \ \ \ \ \
5 s 10 125 15 17.5 20 25 25
Time (s)
(b) Selected extract
Fig. 22 Measured magnitude of velocity.
Estimated path and real path
2k
-4- /
/
E
£ -6
-
=)
4
8!
210
_12 L/ I L L 14 I i 4 L 14 14
S50 45 40 35 30 25 20 -15 -10 -5 0
East (m)

Fig. 23 Estimated path and real path.

The trajectory of the estimated path (red line) in
comparison to the real path (green line) is illatgd in
Fig. 23. Both trajectories are nearly the sameclvis
a first indicator for the quality of our PNS. Thedl
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position error relative to the TTD i€p= 0.5%. In
contrast, the results reported in Ref. [32] shovemar
of 3.6%, which is significantly worse. There, only
non-ZUPT is considered, which might be one reason
for the differences.

6.2.2 Type Il

The scenario for type Il is exactly the same as for
type 1, except that the speed is reduced for thieplart
of the path. To be more precise, the user statdrvga

at a speed of 1.2{%, stops in the middle for about 5s

and continues walking at O.%. Fig. 24 shows the

detection of the stance phase. It is obvious tbat f
reduced velocity, the duration of the stance phase
increases, as it is expected. As before, if we diouly

use conditionsCgznee.1 t0 Coiance 5 the stance phases
could not be reliably detected (see Fig. 25).

The trajectory is shown in Fig. 26. The red ancblu
lines, which are the estimated path for the firstl a
second period, correspond well with the real titajgc
(green line). The final position error 8= 0.3%.

Detection result of stance phase

[ HOUUOEU

30

Stance phase

0
14 18 22 26 66

34 38

Time (s)

(a) Full time span

18 2 u
Time (s)

(b) First part

| L]l

48 50
Time (s)

(c) Last part
Fig. 24 Derived swing and stance phase.

42 46 50 54 58 62

Stance phase

16 20 26 28 30

<t

34

e

Stance phase

60
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Detection result of stance phase
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Fig. 25 Non reliable stanc;mpgﬁ)zase detection according to
Ref. [17].
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Estimated path and real path

East (m)
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.50 ' t
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North (m)
Fig. 26 Estimated path and real path.
Detection result of stance phase
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(a) Full time span

Detection result of stance phase

Stance phase
L
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Time (s)

(b) Selected extract
Fig. 27 Derived stance phase detections including wrong

detections.

6.2.3 Type lll

For the third type, the pedestrian walks on agiiai
path, stands still at the end, turns around andksval
back to the origin. For the concrete experiment
presented below, the path has a length of 24.4ma (on

way) and the user walks at an average speed o
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5mm, 1.4cm and 2.3cm, respectively. The associated
calculated step lengths by only employing the PBR a
1.05m, 0.99m and 1.12m, respectively. This mismatch
between the values of the INS and the PDR showts tha
these are incorrect detections. For this reasomave
included the condition forr in Table 7. For these

. . N r.k INS |
gaits, it holds th | : <0.05« 0.8 Thus, a

IFk, PDR

is set to one. In doing so, the PDR results arerigph
according to Eq. (70).

Fig. 28 shows the trajectory, where the red and blu
lines are the estimated paths for the one-way etiodr
trip, respectively. Once more, the green colouiotkEn
the real trajectory. The results indicate that the
estimated path corresponds well to the true patie. T
final position error is about 0.26m, which implies
€+p =0.54%. Repeating the experiment five times, as
shown in Table 9, produces an averagg-f=1.11%.

Estimated path and real path

North (m)

-3
East (m)

5 4

1.20 % The detection of the stance phases iSfijg.28 Estimated path and real path.

depicted in Fig. 27. By using our enhanced conattio
within the time interval [30s, 33s], still threeigaare
identified, which are incorrect detections. These
detected gaits are caused by moving the ankle glurin

turning. Of course, these gaits also appear for thewalk 4

non-enhanced conditions. For these three wrong,gait
the estimated lengths by only considering the INS a

Table9 Dataseriesfor typelll experiment.

Experiment Specification

Walk 1 0.54%

Walk 2 1.62%

Walk 3 1.22%
0.84%

Walk 5 1.35%

Average 1.11%
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This is well below state-of-the-art approaches, 8% heading information being applied by the Madgwick

presented in Ref. [15]. algorithm. The root cause can be an additional
6.2.4 Type IV magnetic field being available at the time when the
All  further experiments are oriented on the experiment of type IV was executed. One possibitity

experiment described in Ref. [15]. Here, the ttmjgc ~ solve this issue is by incorporating additional

is rectangular shaped with dimensions 13<Br8m. information, e.g. by using the orientation vectdr o

Hence, the TTD is 43m. For type IV the user stops i another positioning system.

each corner, turns around and continuous to walk. T .. _ Estmstedipufusnlrsalpui

experiment is repeated five times. Fig. 29 shoves th 14~

trajectory for one sample. Again, the green linesade

~

the real path and the red line is the estimatgelciary. 8
As can be seen, the initial heading is quite dffier :’
After rotating the estimated path, which is shown i £ »
blue, both paths correspond well. Using this path,E ‘:
€p =0.58%. The problem of the initial orientation i
will be described at the end of this section. Talfle :

contains the results for all five experiments after -
calibrating the initial orientation. » . . 1 1 | |
625 TypeV -14 <12 .10 -8 6 -4 -2 l“:(“)m”j" 4 6 8 10 12 14 16
The experiments for type V are similar to type IV, Fig.29 Estimated path and real path.
except that the user walks continuously across the . Sl s
corners. Fig. 30 illustrates the trajectories, wehtbre
colours are identical to type IV. In Fig. 30, the
trajectories correspond well, which shows thathiis t
case the initial orientation is correct. Compare&eéf. -4
[15], where 5% error is reported, we could achieve
1.73%, as shown in Table 11 for five repetitionshef
experiment. In Ref. [35] an even better result 880
error is reported. For these measurement however, ¢ 10"
superior IMU, i.e. the MTiXsens [37], is utilizedweh 12
offers better resolution and accuracy. Moreovee, th | ' | | | ' | |
IMU is mounted on the foot, which indicates an easi Hm s Ea::(m) T ' :
detection of the stance phases and enables totiheset Fig. 30 Estimated path and real path.

0-

North (m)
(=)

velocity in each gait. Table 10 Dataseriesfor typelV experiment with
It remains to characterize the error of the initial additional calibration of initial orientation.

heading for type IV, in contrast to type V. The lgen Experiment Specification

is caused by the measured magnetic field, aslitag/n Walk 1 2.82%

L ) _ Walk 2 1.52%

in Fig. 31. Although the starting point of theseotw ... 3 0.90%

types of experiments is the same, the value of thewalk 4 2.68%
magnetic field in type IV €LOLT ) is opposite to the ~ Walk 5 0.58%

value in type V &10uT ). This results in wrong ~Average 1.66%
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Tablell Dataseriesfor typeV experiment with additional
calibration of initial orientation.

Experiment Specification
Walk 1 1.72%
Walk 2 0.42%
Walk 3 2.70%
Walk 4 0.35%
Walk 5 3.47%
Average 1.73%
Magnetic field along z-axis
o S0r . . : . ; :
2
=
)
&
2
2
g
] -
2 40 b b 1 b b
0 10 20 30 40 50 60 70
Time (s)
(a) Example from Type IV
Magnetic field along z-axis
~ 30 : : : . : :
220
< 10
2 0
5 -10
g -20
£ -30
= 40
E 505 L L L d L -
0 10 20 30 40 50 60 70
Time (s)

(b) Example from Type V
Fig. 31 Measured magnetic field along the z-axis.

7. Conclusion

The experiments have shown that our PNS fulfils theyg)

requirements on an indoor positioning system. [eifst
all, it is cheap and does not require any additiona

hardware, except a smartphone and a smartwatch. Our
results keep pace with state-of-the-art, whereby we
outperform most approaches, except Ref. [35]. Thesg]

latter however utilizes a better IMU, with superior

9
sensors. For our measurements, we have showﬂnthatt[ |

error for the straight line experiments is below. Fbr
all other scenarios, the average error is alwajewbe
2%, if we do not consider the initial orientatiormas
due to magnetic disturbances. Nevertheless, oterays
cannot fully resolve the drawback of all INS/PDR, i
the accumulation of errors over time. Having shid,t

our system offers a very good performance since it

overcomes two main error sources of common INS:
wrong turning angles and too long/too short esthat
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path lengths. Hence, it is at very well suited as a
bridging technology for seamless positioning.
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