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Starting with the Aalen (1989) version of Cox (1972) ‘regression model’ we show the method for construction of 

“any” joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model 

positive stochastic dependences only with the general assumption that the underlying two marginal random 

variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general 

characterization of bivariate probability distributions that may play similar role as the copula methodology. 

Examples of reliability and biomedical applications are given. 
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Introduction 
Let Y be a random variable of the main interest and random variables X1, … ,Xk be its explanatory 

variables. One may (between others) interpret Y as the random life time of a technical of biological object, and 
the random variables X1, … ,Xk as stresses the object may endure. 

Let, for example, Y be the residual life time of a patient who was diagnosed with a kind of cancer. If this 
patient was not a smoker nor systematically drinking alcohol, her/his residual life time Y0 is considered to be 
the baseline, and the corresponding survival function 

S0(y) = P(Y0 ≥ y) is known to be given by the expression: 
exp[ - ∫0y λ0(t,θ)dt ] , where λ0(t, θ) is the baseline hazard rate. 
In the opposite case we will assume that there are (random) measures, say X1, … ,Xk , of how much the 

person was smoking and/or drinking and/ or etc … (These might include the time length of the consumption 
multiplied by the corresponding approximated amount of a given substance used daily per one kilo of weigh of 
the patient.) 

Here we assume that the probability distributions of the random variables X1, … ,Xk are known, and if 
dependent we know their joint probability distribution. 
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Realize that in the case of one single patient one should know the given (as measured) realization 
(x1, … ,xk) of the random vector (X1, … ,Xk). 

A realization would be of interest for doctors while the whole random vector distribution is more of 
interest for statisticians who deal with actuary investigations. The main problem is how (much) the stresses 
realizations x1, … ,xk influence the hazard rate of the given life time Y. 

It is assumed that when the stresses are involved, the baseline hazard rate λ0(y,θ) will be turned into some 
other (similar) function, say, λ(y, ) of time y. This stochastic phenomenon of the stresses’ impact may be 
described in two different ways: 

Firstly, the stresses may influence the hazard rate λ0(y,θ) “from inside” by transforming its parameter(s) θ 
into other value(s), say, θ* = θ(x1, … ,xk) so that the parameter “becomes” a piecewise continuous function of 
the set of stresses’ realizations x1, … ,xk. 

The resulting hazard rate λ( , ) becomes the conditional one: 

λ(y, θ(x1, … ,xk) ) = λ(y | x1, … ,xk ). 

The latter hazard rate corresponds to the conditional probability density of Y, given the values x1, … ,xk. 
This way of influencing the hazard rate “from inside” is called the ‘parameter dependence method’ and 

was discussed, between others, in Filus and Filus (2012) and (2013). 
Secondly, the description of the influence on the hazard rate by the same stresses “from outside” is very 

well known as the classical Cox model (1972). 
In that model the baseline hazard rate λ0(y) preserves its parameter(s) but instead is multiplied by a factor 

which depends on the values x1, … ,xk. 
In further development of theory this factor may also become dependent on the time y. 
With this modification, the Cox (1972) model for the transformed hazard rate function λ(y) of the life time 

Y, given the stresses x1, x2, … , xm, takes the very well-known form: 

λ(y | x1, x2, … , xm ) = Φ(y; x1, x2, … , xm ) x λ0(y) ,             (1) 

where λ0 (y ) is the baseline hazard rate. 
In this paper, ( while preserving the physical interpretation that the random quantities X1, X2, … ,      

Xm affect hazard rate [so the probability distribution] of the quantity Y as explanatory variables ) instead of  
the Cox model (1) we will consider its modification i.e., the Aalen (1989) “additive hazards model” given   
by: 

λ(y | z1, z2, … , zk ) = λ0 (y ) + ψ (y; z1, z2, … , zk),               (2) 

The reason, that we choose the Aalen additive model over the multiplicative by Cox is a gain of the 
possibility to extend the dependence problem to cases when two sets of random variables, here Y and 
Z1, … ,Zk , are mutually explanatory to each other. 

In the case k=1 ( when the random vector (Z1, … ,Zk ) reduces to one single random variable Z1 = Z ) it 
turns out to be easy to model the mutual dependence by construction of bivariate survival functions of the 
random vector (Y, Z). 

That construction results, as a very special case, with the Gumbel (1960) first exponential bivariate 
survival function (distribution). 

Moreover, this yields a nice and universal characterization, together with the construction, of (say, almost) 
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all continuous bivariate probability distributions when both marginal distributions of Y and of Z are explicitly 
given in advance. 

The Aalen Model Further Development 
Consider the Aalen’s “conditional hazard rate”, as given by (2). 
( In particular, ψ (y; z1, z2, … , zk) in (2) may be considered a linear function in z1, z2, … , zk whose 

coefficients may be functions of time y. ) 
Make the following notations for the corresponding baseline and for the affected survival functions: 

Pr(Y0 ≥ y) = S0(y) = exp [ - ∫0y λ0(t ) dt ] ,                    (3) 

and 

Pr(Y ≥ y) = S(y | z1, z2, … , zk ) = exp [ - ∫0y
 λ(t | z1, z2, … , zk) ) dt ] ,      (4) 

where the hazard rates λ0 (t ) and λ(t | z1, z2, … , zk)) are related 
by formula (2). ( It always will be assumed that P(Y ≥ 0 ) = 1 ) 

From the Aalen additive model we have relation: 

λ0(t)  λ(t | z1, z2, … , zk) equivalent to 

S0(y)  S(y | z1, z2, … , zk). 

Note that the Aalen additive version (2) of the Cox model (1) is always equivalent to multiplying the 
baseline probability (survival function) S0(y) by the factor 

exp [ -∫0y ∫0z1, … ,zk ψ (t; u1, u2, … , uk )du1 … duk dt ]. 

This factor, in a quite good sense, may be regarded as a “probability ”. 
Pursuing in this direction one obtains the Aalen additive model in the form of the following product of 

probabilities: 
S(y | z1, z2, … , zk ) = exp [ - ∫0y λ0 (t ) dt ] * exp[ -∫0y ∫0z1, … ,zk ψ (t; u1, u2, … , uk )du1 … duk dt ] 

= S0(y) * exp[ -∫0y ∫0z1, … ,zk ψ (t; u1, u2, … , uk )du1 … duk dt ].            (5) 

As it follows from above, formula (5) represents the conditional survival function of Y, given the events 

Z1 ≥ z1, … , Zk ≥ zk : 

S(y) = S(y | z1, z2, … , zk ) = S0(y) * exp[ - ∫0y ∫0z1, … ,zk ψ(t; u1, u2, … , uk )du1 … duk dt] (5*) 

The factor 

exp[ - ∫0y ∫0z1, … ,zk ψ(t; u1, u2, … , uk )du1 … duk dt] 

we propose to call “Aalen factor” as, apparently, the latter formula (5*) is the full version of the operation: 

S0(y)  S(y) as determined by the Aalen’s model (2). 

It appears that the latter “Aalen’s addition” and the equivalent Aalen's multiplication (5*) of the 
“probabilities” well reflects an underlying ‘physical’ impact of the stresses Z1, Z2, … , Zk on 
the baseline life time Y0 . Meanwhile, realize that the original “Cox multiplication”: 

λ(y | x1, x2, … , xm ) = Φ(y; x1, x2, … , xm ) x λ0(y) , 
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does not produce as nice formula for the S0(y)  S(y) operation. 
Instead of the “probabilities” multiplication (5*) the original Cox model produces the exponential formula 

S(y | x1, x2, … , xk ) = S0(y)Φ( x1, x2, … , xm ) . 

In this exponential case a “physical action” of the quantities X1, X2, … , Xk on the quantity Y is not as 
tangible as with the Aalen model. So, for the original Cox model, the physical interpretation in terms of the 
probabilities is not so direct. 

The Application of the Aalen’s Paradigm to Bivariate Probability  
Distributions Construction 

The specific, (Aalen’s) multiplicative character of the conditional survival function (5*) gives one the 
possibility to handle mutual dependence model, when the random variable Y and the random vector (Z1, Z2, … , 
Zk) are explanatory to each other. 

Notice: To keep it simpler we now replace the random vector (Z1, Z2, … , Zk) by a single random variable 
Z (the k = 1 case) that has some (arbitrary) known survival function 

S2(z) = exp[ - ∫0z µ0(t) dt ]. 

Also, for clarity we will use the notation S1(y) and S2(z) for the probabilities 
P(Y ≥ y) and P(Z ≥ z ) respectively. 
We then obtain in place of (5*) the following distribution conditioned on an event Z ≥ z : 

S(y) = S(y | z) = S1(y) * exp[ - ∫0y ∫0z ψ (t; u) dudt ] (5**) 

Now, multiplying (5**) by S2(z) = Pr(Z ≥ z) one obtains the joint survival function of the random vector 
(Y, Z) in the form: 

P(Y ≥ y, Z ≥ z) = S1(y) S2 (z) exp[ - ∫0y ∫0z ψ (t; u) dudt ]            (6) 

Express the latter equality by: 

P(Y ≥ y, Z ≥ z) = exp[ -∫0y λ0 (t ) dt - α(y, z) - ∫0z µ0 (t ) dt ] ,         (6*) 

where the expression α(y, z) = ∫0y ∫0z ψ (t; u)dudt analytically describes the mutual stochastic dependence 
between the random variables Y, Z. 

When α(y, z)  0, the variables Y, Z “become” independent. 
We (mostly) will assume that ψ (t; u) ≥ 0 for all t, u (the positive dependence). 
Example: As an underlying example illustrating the stochastic dependence model (6*) one may consider 

the reliability of two interacting components in a series system whose dependent life times are these Y, Z. 
At first, we are given the independent (baseline) life times Y0, Z0, of the components estimated separately 

in laboratory conditions, so that the corresponding baseline components failure (hazard) rates are λ0(y), µ0(z). 
When put into the system, the components “start” to interact physically affecting each other. So the side effects 
of the operating process of each working component impacts changes in the inner physical structure of the 
other component. 

Here the 
“(micro-shocks  micro-damages)  (micro-hazard rates changes) and their cumulation” pattern may be 

employed, see for example Filus and Filus (2008). These (micro)-changes may, for example, accelerate 
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degradation (or adaptation) or other physical (chemical) processes resulting in the affected component 
‘statistically earlier’ failure. Mathematically this means that the presence of the other component at a given 
instantaneous time epoch t causes the component’s failure (hazard) rate to be higher ( or lower, but this case 
needs a separate treatment ) than the original, by an “infinitesimal value”, say ψ(t; u) dt du. 

Compare with the ‘Aalen scheme’. 
Now, in particular, the components “in system” life times Y, Z may be jointly distributed according to (6*) 

i.e., 

P(Y ≥ y, Z ≥ z) = exp[ -∫0y λ0 (t ) dt - α(y, z) - ∫0z µ0 (t ) dt ] , 

with 

α(y, z) = ∫0y ∫0z ψ (t; u) du dt. 

Other examples of tandems of two, mutually affecting random quantities Y, Z may be taken from a 
bio-medical investigations. Y, Z, may be considered as levels of some chemicals 

(hormones, in particular) in a human or an animal body. 
Also, an example may provide the pair ‘pulse rate’ Y and the accompanying ‘blood pressure’ Z. 

On Universal Representation of Bivariate Survival Functions 
The Representation 

Now we will depart slightly from the Aalen model toward more general paradigms. Thus we may drop the 
assumption on existence of the hazard rates λ0(y), µ0(z) , and the function α(y, z) need not anymore be 
expressed by the integral ∫0y ∫0z ψ (t; u) dudt. 

Instead of formulas (6) and (6*) for the joint survival function of (Y, Z) we may use the following, more 
general, formula: 

S(y, z) = S1(y) S2 (z) exp[ -α(y, z) ] ,                        (7) 

where α(y, z) is only assumed to be a nonnegative measurable real function, defined for y ≥ 0, z ≥ 0. 
However, for simplicity, we specify the subclass of the functions α(y, z) as satisfying the following three 

conditions. So we consider any α(y, z) to be: 
(1) continuous with respect to y and with respect to z, 
(2) nondecreasing with respect to both variables, 
(3) α(0, z) = α(y, 0) = 0. 
From the last condition it directly follows: 
Property 1. If the above condition (3) is satisfied then both the marginal probability distributions of the 

joint distribution given by formula (7) are preserved in the sense that they are the same as the baseline 
distributions S1(y), S2(z) originally given. � 

If the marginal and the joint densities of the considered throughout random variables Y, Z exist, the 
concern is on nonnegativity of them. While the marginal densities, say, f(y), g(z) are nonnegative due to 
nonnegativity of the corresponding hazard rates λ0(y), µ0(z) we need some special condition to assure 
nonnegativity of the joint density h(y, z). 

Thus, first of all, if the joint density h(y, z) exists the function 
α(y, z) must have continuous partial derivatives of first order αy(y, z), αz(y, z) and the continuous second 
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order mixed partial derivative αy, z(y, z) = ψ(y, z). 
In this case, the above conditions (1), (2), (3) for the α(y, z) are not always satisfactory in order to 

“connect” [to the joint distribution] two survival functions S1(y), S2 (z) that possess the hazard rates λ0(y), µ0(z), 
respectively. 

The additional condition, that must be satisfied too, has the form of the following inequality: 

[ λ0(y) + αy(y, z) ] x [ (µ0(z) + αz (y, z) ] ≥ αy,z (y, z).                (8) 

This follows from the form of the joint density: 

h(y, z) = ∂2/∂y∂z S(y, z) = 

{ [ λ0(y) + αy(y, z) ] x [ (µ0(z) + αz (y, z) ] - αy,z (y, z) }exp[- Λ1(y) - Λ2(z) - α(y, z) ] 

which must be nonnegative. 
Here, d /dy Λ1(y) = λ0(y), and d /dz Λ2(z) = µ0(z) and αy,z (y, z) = ψ(y, z). 
A simpler condition than (8) for the nonnegativity of h(y, z), that is satisfactory too (but not necessary) for 

the existence of the joint survival function (6*) is the following obtained from (8): 

λ0(y) µ 0(z) ≥ αy, z (y, z).                              (8*) 

The condition (8) or (8*) together with the conditions (1), (2), (3) are satisfactory for connecting two 
survival functions S1(y), S2 (z) by a given joiner α (y, z) into the bivariate model S(y, z). As it was pointed out 
above, there is a huge number of such models. 

Particular Cases of the Bivariate Models 
A. Obviously, when α(y, z) reduces to zero for all y, z then model (7) describes independent random 

variables. 
B. If the baseline hazard rates exist and are constant, say λ0, µ 0 , we call this model “exponential”. 
In this case we may choose as the ‘dependence function’ α(y, z) = ayz (a > 0) to obtain the following 

special case of model (7): 

S(y, z) = exp [ - λ0 y - ayz - µ 0 z ]                          (9) 

(a ≤ λ0 µ 0), 

which, apparently, represents the first bivariate exponential Gumbel (1960) probability distribution. 
C. One also obtains the following ‘Weibullian version’ of the above bivariate Gumbel: 

S(y, z) = exp [ - λ0 yγ1 - ayγ1zγ2 - µ 0 zγ2 ] ,                     (10) 

where γ1 and γ2 are positive reals. 
The models (9) and (10) are special cases of the representation (7). 
Remark 2. As for above Weibullian version (10) of the Gumbel exponential model 

(where γ1 and γ2 are positive reals and a ≤ λ0 µ 0) it can be extended to the following one: 

S(y, z) = exp [ - λ0 yγ1 - ayδ1zδ2 - µ 0 zγ2 ]                     (11) 

However, in order to satisfy the requirement (8), we must restrict it by imposing the conditions: 

0 < δi ≤ γi (for i = 1, 2 ). 
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Remark 3. The form of model (7) and its Property 1 allows us to construct a huge number of bivariate 
probability distributions from (7). For this realize that: 

1. For any given fixed ‘dependence function’ α(y, z), ‘any’ pair of two probability distributions [not 
necessarily from the same class], determined by S1(y), S2 (z) (so that inequality (8) or (8*) is satisfied), may be 
“connected” by formula (7) to “become” the bivariate survival 

(distribution) function in which they remain the marginals. 
2. For any fixed pair of probability distributions, given by S1(y), S2 (z), there is a wide class of “possible” 

dependence functions α(y, z) [ only determined by the conditions (1), (2), (3) together with inequality (8) or (8*) 
from section 4.1 ], so that the two given distributions can be “connected” into the bivariate model (7) in as 
many ways as there are possible proper functions: α(y, z) . � 

We propose to call the dependence function α(y, z) “joiner”. 

Similarity to the Copula Concept 
Recall we restrict our analysis to the probability distributions centered on nonnegative real values only. At 

this point, notice that the possibility to construct a wide class of joint survival functions, given any single pair 
S1(y), S2 (z) of marginal survival functions resembles the copula methodology for bivariate probability 
distributions construction see (1959). This is, however, a “different story” as neither (6*) nor (7) 
representations are copula representations. To obtain a proposition that is somehow equivalent to the Sklar’s 
theorem (1959) for the copula representations, one may characterize the class of (all “reasonable”) bivariate 
survival functions S(y, z) as given by representations (7) , i.e., by the class of all proper joiners α(y, z) and 
corresponding marginals so that either (8) or (8*) holds. 

Restating somewhat Remark 2 we obtain the following two propositions: 
Proposition 1. Suppose we are given any continuous joint survival function, say, S(y, z) with its 

continuous marginals S1(y), S2 (z) , then the corresponding unique “joiner representation” (7) for S(y, z) exists 
and is given by a unique continuous function α(y, z). � 

The next proposition is somewhat inverse to Proposition 1. Although it is not necessary, but for better 
clarity, in the following proposition we will assume that for all the corresponding survival functions the 
probability densities exist. 

Proposition 2. For any pair of survival functions S1(y), S2 (z) and any function α(y, z), satisfying the 
conditions (1)-(3) from section 4.1 ( and satisfying the inequality (8) or (8*) with 
respect to the given survival functions S1(y), S2 (z) ), there is unique joint survival function S(y, z) with S1(y), 
S2(z) as marginals, and which can be written in the form (7). � 

For the proof of Proposition 1 just set 

α(y, z) = – log { S(y, z) / S1(y)S2 (z) } 

The latter short proof exhibits the arbitrariness of the joint distribution S(y, z) to have representation (7). 
Proposition 2 is obvious. � 

The advantage of the above joiner representation (7) over the copula representation mainly lies in the fact 
that the joiner α(y, z) ( especially when expressed in terms of the hazard rates (6*) within the “Aalen 
paradigm” ) usually has (or may have) a direct physical or any other ‘real life’ interpretation, while most of the 
copulas are given by rather purely mathematical relationships without such references to modeled realities. 
Thus, finding a copula for a given problem in applications is usually not easier than finding the joint 
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distribution itself. 
The important fact is that for the joiner representations, when given by (6*), there exists a straight relation 

between this universal representation of bivariate probability distributions and 
the Aalen’s additive formula (2) (with k = 1 and z1 = z) for the underlying stochastic dependence pattern. 

Recall, the Aalen model is the modification of the model by Cox (1972). 
Remark 4. It seems quite possible also to “connect” any two known, or newly constructed, stochastic 

processes, say Yt and Zt by a “joiner function” αt(yt, zt) [satisfying inequality (8) for each t ] which should be a 
(continuous in the continuous time case) function of time t. In particular, a constant function might be a proper 
one in many cases. In such a way new bivariate stochastic processes, say (Yt , Zt) could be constructed. � 

Extension of the above ideas for higher dimensions should not be difficult. 
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