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Abstract: AM (additive manufacturing) of metal parts becomes increasingly important in many industrial fields. However, currently 
used AM processes like laser melting or electron beam melting are quite complex and expensive. The extrusion based AM 
technology for dense metal components (Composite Extrusion Modelling-CEM), is characterised by an easy handling and cost 
efficiency in comparison to powder based processes. The CEM process contains two steps, the additive manufacturing of the green 
parts and the consecutive sintering. The additive manufacturing of green parts is carried out in a thermally controlled extrusion 
process. The standard metal injection moulding material with a high proportion of metal and thermoplastic binder is deposited in 
layers by a heated nozzle. In this way overhangs and bridge structures can be realised. The quality of the green parts that were 
manufactured with the specifically developed extruder corresponds to typical Fused Deposition Modelling parts. In case the surfaces 
need to be smooth the green parts can be mechanically post-processed before going through the debinding and sintering process. 
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1. Introduction 

AM (additive manufacturing) or commonly called 

3D-printing no longer just concerns research 

institutions and large enterprises; it has already found 

its way into the private user area. One important 

reason was the development of low-cost 3D-printing 

kits based on the FDM (fused deposition modelling) 

process. The process was initially developed by S. 

Scott Crump, Stratasys Inc., Eden Prairie, USA and 

protected by the patent US 5121329 A [1], which 

expired in October 2009. The FDM process is based 

on a layer by layer fusing of volume elements, like all 

AM processes. In this special case the volume 

elements are extruded thermoplastic threads. 

According to Gebhardt [2] AM processes can be 

categorized according to the state of aggregate of the 

source material. In this context FDM is one of the 

processes with a solid source material. In contrast to 

other additive processes, which also use solid source 

material like for example SLS (selective laser 

sintering) or 3DP (3D powder bed printing), the part is 

not built into a powder bed, but on an empty plate. 
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This requires the use of supporting structures for 

overhangs and large self-supporting constructions. 

The source material is usually available as a filament, 

familiar to the wire for plastic welding and is limited 

to thermoplastic polymers. Occasionally additives are 

composited to the thermoplastic base material, to 

adapt the material properties in terms of elasticity, 

optic and haptic characteristics or conduction. There 

are thermoplastic elastomers, wood-, sand- or even 

metal filled filaments. Especially the metal filled 

filaments do not increase the mechanical strength of 

the material. They rather decrease it in terms of 

brittleness by the added particles in the thermoplastic 

matrix. The success and the popularity of the FDM 

process are based on the cost efficient system concept, 

the manageable material and not least because of the 

achievements made by the open source community 

that have gained access to AM. Nevertheless the 

industrial use of AM increasingly requires processes 

that can build metal parts like it is shown in the 

Wohlers Report 2014 (76% growth of metal AM 

systems sale) [3]. Distributed representatives are beam 

based powder bed processes like SLM (selective laser 

melting), EBM (electron beam melting) and SLS. 

These methods are based on the layer wise applying of 
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Fig. 5  SEM image of a printed an sintered cylinder. 
 

 
Fig. 6  Different sintered components. 
 

microstructure and the shrinkage are comparable to 

values delivered by standard MIM processes. 

Furthermore the creation of overhangs as seen in Fig. 

6 and also closed hollow parts could be approached. In 

further investigation an optimization of the extrusion 

process, concerning the print speed and -quality, will 

be carried out. Also there will be further investigations 

of the mechanical strength. Specifically tensile 

strength tests, notched bar impact tests and tests for 

the exact dependence of infill proportion and build 

direction will be made. Potential applications could 

lay in the field of rapid prototyping for MIM products, 

but also in small batch production or custom 

components for special applications. The possibility to 

build fully closed hollow metal components in a cost 

efficient process could bring benefits for space and 

aviation application and also for the production in 

small and medium sized enterprises. 
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