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Abstract: OIA (optical image analysis) has traditionally been used for reliable identification of different iron oxides and 

oxyhydroxides in iron ore. The automated CSIRO OIA system Mineral 4/Recognition 4 was created for rapid mineral and textural 

characterisation of iron ore providing identification of different minerals and different morphologies. The technique has further been 

applied to processed iron ore products such as iron ore sinter to determine key parameters such as porosity, different morphologies of 

hematite (primary and secondary), and different morphologies of SFCA (silicon ferrite of calcium and aluminium). Application of 

textural identification has recently been extended to coke characterisation where the software gives comprehensive characterisation of 

porosity, IMDC (inert material derived components), RMDC (reactive material derived components) and the boundaries between 

IMDC and RMDC. The software also has many unique features needed for iron ore research including characterisation of large objects 

like pellets and ore lumps; automated gangue (including quartz) identification; automated particle separation; multiple image set 

processing and on-line measurements. All these features make the Mineral 4/Recognition 4 OIA system a unique, reliable, 

industry/research focused tool for ore, sinter, pellet and coke characterisation. 
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1. Introduction

 

The development of new complex iron ore deposits 

together with the need to maximise iron grade and 

recovery from beneficiation processes and to optimise 

agglomeration processes demands a robust technique 

for the comprehensive characterisation of iron ores and 

its processed products. 

Typically, chemical and mineral composition is 

determined by XRF (X-ray fluorescence) and XRD 

(X-ray diffraction) analysis, respectively. However, 

information about mineral liberation and associations 
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processing modelling. 
 

is  often  required  as  this  will  affect  subsequent 

beneficiation processes. These are commonly obtained 

from two or three dimensional imaging techniques [1, 

2]. Ores with similar mineralogy can behave differently 

during processing, as the behaviour is also determined 

by the spatial distribution of different minerals and 

porosity (that is, textural composition) of the ore [3, 4]. 

As an example of the differences in texture possible for 

a chemically simple mineral such as hematite, Fig. 1 

shows four different particles that consist primarily of 

hematite, but exhibit significantly different textures. 

These different textures have different characteristics 

in terms of hardness, attrition resistance, moisture 

absorption,  and   will   behave   differently   during 

comminution and beneficiation processes as well as 

D 
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(a)                                 (b) 

 
(c)                                 (d) 

Fig. 1  Examples of four hematitic particles exhibiting different textural types ranging from dense (a) to highly porous (d). 
 

granulation and sintering. Ideally each of these examples 

should be attributed to different textural classes. 

Particles with similar textures are likely to express 

similar behaviour during downstream processing. 

Consequently, characterising ore as a combination of 

certain textures, together with the known response of 

each textural type to certain processing conditions, 

would improve prediction of the ore overall behaviour 

during processing. 

Two major imaging techniques are currently used to 

characterise iron making materials: SEM (scanning 

electron microscopy) [5-7] and OIA (optical image 

analysis) [8-11]. Both techniques have their advantages 

and drawbacks. SEM methods better characterise 

gangue including non-opaque minerals and give 

simultaneous chemical composition, while OIA is 

more cost effective, better distinguishes between 

different iron oxides and oxyhydroxides (see Fig. 2 for 

mineral segmentation by Mineral 4, reproduced from 

Ref. [9]), has better resolution for massive screening 

and better characterises porosity (for detailed 

comparison of the two techniques see Refs. [3, 12]). 

This article briefly describes the automated CSIRO 

optical image analysis system Mineral 4/Recognition 4 

before showing examples of the application of the 

software to the characterisation of materials used and 

produced in iron making. We provide examples of the 

application of the method to iron ore and coke feed 

materials as well as to processed products such as iron 

ore sinter and pellets. 

2. Importance of Textural Classification 

Recognition of the importance of textural 

information for the prediction of downstream 

processing is steadily increasing among the industry 

and academics [3, 13]. 

Fig. 3 is an example from mathematical modelling 

of sinter cold strength (TI (Tumble Index)) as a 

performance indicator of sintering performance of iron 

ore fines [14, 15]. Fig. 3 (reproduced from Ref. [15]) 
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(a)                                     (b) 

  
(c)                                     (d) 

Fig. 2  Examples of optical image analysis of iron ore by Mineral 4: (a), (c) Images of samples of Brockman (with some 

addition of keno magnetite) and Marra Mamba fine ores; (b), (d) corresponding mineral maps obtained in Mineral 4 

(magenta—keno magnetite, blue—hematite, dark blue—hydro hematite, green—vitreous goethite, olive—ochreous goethite, 

cyan—quartz, yellow—porosity). 
 

 
(a)                                            (b) 

Fig. 3  Comparison of modelled and experimental tumble index values: (a) modelling without textural information; (b) 

modelling with textural information. 
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shows a comparison between experimental results for 

sinter cold strength (TI) and its modelling without (a) 

and with (b) taking textural information into account. 

Based on these data, the importance of inclusion of 

textural information is apparent, as the modelled data 

became much closer to the experimental data when 

textural information was added. The standard deviation 

of the prediction (i.e. the standard deviation of the 

difference between experimental and predicted values) 

reduced from 1.53 to 1.13. Similarly, the calculated 

R-squared (the percentage of total variation in the 

experimental data explained by the regression model) 

for modelling the sinter TI (tumble index) without the 

inclusion of the textural information was 75.6%, 

whereas with the inclusion of textural information it 

was improved to 86.9%. It should be emphasized that 

the unexplained variation reduced almost twice from 

24.4% to 13.1%. 

3. Mineral 4/Recognition 4 Software 

As indicated above, the level of automation in 

existing SEM and OIA technologies is very high. The 

key difference between these existing techniques and 

the Mineral 4/Recognition 4 OIA package produced by 

CSIRO is the capability to automatically classify 

particles by texture. 

To achieve this, the software has two main 

components, Mineral 4 and Recognition 4. Mineral 4 

is responsible for image collection, image processing, 

measurement of large sets of image/particle features, 

and output of the measurement results to Microsoft 

Excel and a particle/frame database. One of the key 

features of Mineral 4 is that it performs mineral 

identification and segmentation of different 

morphologies of the same mineral or identification of 

phases with similar reflectivity but different structures 

[2, 9]. As an example, Fig. 4 (reproduced from Ref. 

[12]) demonstrates the automated segmentation of two 

different types of hematite—martite and micro platy 

hematite—that have the same reflectivity but different 

morphology/texture. This feature can also be used for 

the segmentation of different morphologies of hematite 

and SFCA in iron ore sinter and IMDC (inert maceral 

derived components) and RMDC (reactive maceral 

derived components) in metallurgical coke. 

Recognition 4 performs the automated particle/frame 

texture classification, filtering, analysis and reporting. 

Table 1 and Table 2 give a reduced output example 

from a Recognition 4 based textural characteristic of an 

iron ore sample. Only some textural classes (altogether 

there were 20 classified in this ore) and major parameters 

are given in this table (for more details see Refs. [2, 

16]). Recognition 4 calculates all major parameters for 

each textural group, namely: number of particles in the 

textural class, frequency (percentage of certain class 

particles by number), percentage of particles in the 
 

  
(a)                                           (b) 

Fig. 4  Identification of martite and micro platy hematite by Mineral 4: (a) original reflected light photomicrograph; (b) 

mineral map (martite—yellow, micro platy hematite—magenta). 
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Table 1  Example of particle textural classification output from Recognition 4 (Part 1) showing major characteristics for each 

textural group. 

Parameters/part type Structure 
No. of 

part 
Freq. % Area % Wt % 

Mean 

Fe Tot 

Mean 

SG 

Mean 

mineral area 

(µm2) 

Mean shape 

factor 
Mean Elong. 

Shale-kaolinitic Soft 52 0.43 0.36 0.18 10.02 2.11 3,757 4.15 1.7 

Microplaty hematite Medium 1,016 8.39 8.37 8.05 69.05 4.15 4,485.3 3.22 1.76 

Dense hematite V. Hard 5,143 42.45 43.87 48.93 69.2 4.81 4,643.1 2.47 1.75 

Vitr.-Ochr. goethite Soft 1,097 9.05 8.66 6.66 58.42 3.32 4,294.5 3.08 1.78 

Martite-goethite Hard 1,022 8.44 8.7 9.34 67.96 4.64 4,631.6 2.59 1.78 

Martite-goethite Medium 1,158 9.56 9.83 9.41 67.19 4.13 4,622.2 3.09 1.73 

Goethite-martite Soft 404 3.33 3.29 2.56 61.66 3.36 4,429.8 3.28 1.72 

Goethite-martite Hard 858 7.08 6.97 6.52 63.53 4.04 4,424.2 2.92 1.76 

*abbreviations: Vitr.—vitreous; Ochr—ochreous; Freq.—frequency; Elong.—elongation. 
 

Table 2  Example of particle textural classification output from Recognition 4 (Part 2) showing the average mineral 

composition and porosity of particles within each class of particle. 

Part type/mineral 
Keno-magne

tite (Wt) 

Hematite 

(Wt) 

Hydro-hema

tite (Wt) 

Vitreous 

goethite 

(Wt) 

Ochreous 

goethite 

(Wt) 

Kaolinite 

(Wt) 
Quartz (Wt) 

Pores % 

(area) 

Shale-kaolinitic 0.0876 1.83 0 5.31 9.65 80.12 2.99 23.08 

Microplaty hematite 0.0971 97.92 0.0569 1.26 0.49 0.13 0.0405 18.11 

Dense hematite 1.57 97.02 0.15 0.85 0.36 0.0493 0.0033 5.27 

Vitr.-Ochr. goethite 0.053 1.39 0.0408 75.65 21.3 1.53 0.0262 17.56 

Martite-goethite 0.93 84.88 0.59 11.65 1.86 0.0573 0.026 6.24 

Martite-goethite 0.58 79.19 0.19 15.86 3.94 0.22 0.0265 14.84 

Goethite-martite 0.37 34.07 0.18 45.94 18 1.41 0.0403 21.28 

Goethite-martite 1.18 38.97 0.61 53.08 5.97 0.13 0.0493 10.9 

 

class by area, weight percentage, calculated average 

total iron, calculated average density, average area, 

mean shape factor, mean elongation (Table 1). 

Recognition 4 also calculates variation coefficients for 

total iron, density and area (not shown in Table 1). 

As well, the software also calculates the average 

mineral composition and porosity of particles within 

each textural class (Table 2). 

For each individual textural class, the overall set of 

particles, or any particle subset based on criteria chosen 

from a wide range of options such as mineral 

composition, chemical composition, porosity, shape 

etc., much more comprehensive information can be 

calculated, including mineral liberation and association, 

mineral and density variability, dimensional 

characteristics, and chemical and mineral composition 

[2, 16]. It should be also noted that the textural 

classification scheme can be changed within the 

software if necessary, so the same set of data can be 

classified differently depending on the user 

requirements. 

4. Characterisation of Iron Sinter 

Due to the high percentage of iron sinter in the total 

ferrous burden (70-85%), sinter quality is a key 

element for stable blast furnace operation. Correct 

characterisation of iron ore sinter mineralogy and 

porosity is therefore very important for optimisation of 

the sintering process and understanding sinter quality in 

terms of mechanical strength and reducibility [17, 18]. 

Sinter phase characterisation is usually manually 

performed by an experienced mineralogist (point 

counting) using a microscope. Automatic identification 

of different morphologies of the same mineral by 

standard automated routines of OIA or SEM is not 

possible due to the fact that different morphologies of 

the same mineral have similar reflectivity and chemical 

composition. The examples below show that Mineral 
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4/Recognition 4 successfully performs this task 

automatically using a textural identification procedure. 

This removes the subjectivity associated with manual 

point counting by eliminating opinion-based error and 

significantly increases productivity and the quality of 

data. 

4.1 Example 1: Classification of Primary versus 

Secondary Hematite 

During characterisation of sinter mineralogy, 

mineralogists/petrologists often distinguish different 

morphologies of the same mineral. For example, it is 

critical to understand how much hematitic nuclei are 

left unreacted after the sinter melt resolidifies which 

affects the sinter strength [14]. Hematite not reacted 

during sintering is called “primary hematite” and 

should be distinguished from “secondary hematite” 

derived from melt (see Fig. 5 (reproduced from Ref. 

[17])). 

4.2 Example 2: Characterisation of SFCA 

Morphological Types 

Another  important  mineral  with  different 

morphologies present in sinter is SFCA (silico-ferrite  
 

 
(a) 

 
(b) 

Fig. 5  (a) Typical photomicrograph of crushed sinter, and, (b) mineral map obtained during automated image analysis: 

primary hematite—light blue, secondary hematite—dark blue, magnetite—magenta, Fibrous SFCA—light green, Columnar 

SFCA—cyan, glass—dark green, porosity and epoxy within particles—yellow. In Fig. 5a, primary hematite is indicated by 

the circled regions. 
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(a) 

 
(b) 

Fig. 6  (a) Photomicrograph of crushed sinter showing dense SFCA (indicated by the circled regions); (b) mineral map 

obtained during automated image analysis: primary hematite—light blue, secondary hematite—dark blue, 

magnetite—magenta, Fibrous SFCA—light green, Columnar SFCA—cyan, Dense SFCA—olive, glass+quartz—dark green, 

porosity and epoxy within particles—yellow. 
 

of calcium and aluminium). Different researchers 

identify many different types of SFCA [19, 20] with 

the major types of SFCA identified by sinter 

petrologists as being: SFCA-I (fibrous), dense SFCA 

and columnar SFCA [21]. While SFCA-I has an easily 

recognisable micro-porous texture (see Fig. 6 

(reproduced from Ref. [17])), dense SFCA has SFCA 

crystals inter-grown with almost no porosity (also 

shown in Fig. 6). Columnar SFCA most often has a 

prismatic morphology. 

It should also be noted that, together with different 

morphologies of hematite and SFCA, the software 

identifies porosity and other minerals or phases present 

in sinter such as magnetite, magnesio-ferrite, glass, 

larnite, unreacted fluxes etc. A recent comparison 

between manual point counting and automated 

characterisation [21] revealed that manual point 

counting tends to underestimate minor phases present 

as fine inclusions. It also tends to underestimate glass 

due to the fact that glass reflectivity is very close to the 

reflectivity of epoxy making it impossible for the 

human eye to make a reliable distinction between them. 

However modern OIA, which has more than 16,000 

grades in each colour channel, reliably segments glass 

from epoxy (see Fig. 6). The work of Hapugoda et al. 

[21] also showed that manual point counting tends to 
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overestimate microporous phases because it does not 

take the presence of microporosity into account. 

5. Coke Characterisation 

Metallurgical coke is a critical component of the 

blast furnace burden. It performs several important 

functions, such as provision of reducing gases, fuel for 

supporting the necessary temperature, and provides a 

source of carbon in order for the hot metal to have 

certain properties [22]. Furthermore, it supports the 

burden to ensure good permeability for the 

transmission of reducing gasses and liquid phase 

drainage. To fulfil these tasks, coke is required to meet 

certain standards related to strength and reactivity. 

It is accepted that coke strength is determined by its 

structure [23-28] in which three major components 

define the strength: 

 Coke porosity. Patrick and Walker [27] showed 

that coke tensile strength has a negative correlation 

with pore size and elongation. Kubota et al. [23] also 

demonstrated the existence of a strong correlation 

between the total pore area and the total perimeter of 

low roundness pores and coke strength (as measured by 

DI
150

6). 

 Coke matrix. Average pore wall thickness was 

correlated with coke strength by several researchers 

[22, 25, 27]. 

 Proportion of IMDC (inert maceral derived 

components). Kubota et al. [24] reported that coke 

strength depends significantly on IMDC particle size 

and the presence of cracks accompanying IMDC. 

The first two components were measured 

automatically by optical image analysis techniques 

during earlier research [22, 23, 25-27]. However the 

IMDC measurements had to be performed manually 

till recently [24]. The reason for this was that IMDC 

and RMDC (reactive maceral derived components) 

have highly overlapping ranges of reflectivity and 

cannot be segmented through simple thresholding 

techniques. 

Coke petrologists can easily distinguish between 

IMDC and RMDC based on the difference in their 

structure. This difference was taken into account in 

Mineral 4 by utilisation of the textural identification 

procedure that allowed automated identification of 

IMDC, RMDC and porosity (see Fig. 7 (reproduced 

from Ref. [28])). The correlation coefficient between 

manual point counting and automated IMDC 

identification in the study was 0.98. The software 

initially segments the coke matrix from porosity using 

thresholding, and after that it uses three different 

structural identification methods to segment IMDC 

from RMDC [28, 29]. The results of these three 

methods are combined to obtain the final identification 

of IMDC. These methods include: 

 Bulk identification of IMDC, which is based on 

the appearance of non-reacted IMDC as a large nucleus 

surrounded by RMDC having a reacted “network” 

structure; 

 Fine porosity IMDC identification which 

segments areas with a high level of microporosity; 

 “Washed out” areas method, which is based on 

observations of areas in some polished blocks which 

have lower reflectivity than the overall coke matrix. 

They are assumed to be areas of IMDC partially 

destroyed during epoxy block preparation due to 

insufficient resin impregnation of the sample, or IMDC 

with high micro/nano-porosity (see IMDC in the white 

ellipse Fig. 7). 

To demonstrate the textural identification 

capabilities of Mineral 4, additional examples of “Fine 

porosity IMDC identification” are provided below. Fig. 

8 illustrates different stages of this method applied to 

the image of a coke sample shown in Fig. 8a. In the first 

stage, the overall porosity map and map of the solid part 

of coke matrix are segmented by thresholding. 

The fine porosity is then extracted from the whole 

porosity map (Fig. 8b). In the next stage, areas (clusters) 

of concentrated fine porosity are identified (Fig. 8c). 

Finally, by masking with the map of the solid part of 

the coke, microporous IMDC areas are determined (Fig. 

8d). 
 



Mineral 4/Recognition 4: A Universal Optical Image Analysis Package for Iron Ore,  
Sinter and Coke Characterization 

  

24 

 

  
(a)                                               (b) 

Fig. 7  Automated identification of IMDC: (a) original reflected light photomicrograph of a coke sample (“Washed out” 

IMDC circled); (b) automatically mapped IMDC (magenta), RMDC (blue) and porosity (yellow). 
 

  
(a)                                            (b) 

  
(c)                                            (d) 

Fig. 8  Photomicrograph of coke (a) intermediate maps in “Fine Porosity IMDC identification”, (b) fine porosity map, (c) 

areas of concentrated fine porosity, and (d) final map of microporous parts of IMDC (white). 
 

RMDC 
IMDC 

Porosity

ity 
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The characterisation of IMDC also includes 

calculation of the IMDC size distribution for the whole 

group, for each size fraction, or for each IMDC area 

separately (if needed). Such calculations include the 

average area of IMDC, the convex area of IMDC 

region (area of convex shell), the perimeter, the ratio of 

ferets (elongation), the equivalent circle diameter, 

convexity, concavity, solidity (see Ref. [22]), shape 

factor, smoothness of IMDC boundary and boundary 

length. Porosity characterisation also includes 

distributions with similar descriptors. Donskoi et al. 

[28] showed that to properly reflect the effect of large 

objects (pores, IMDC), and to reduce the effect of 

small objects, averaging of characteristics should be 

performed using weighting by object area. Mineral 4 

calculates averages for each characteristics both by 

number and by area. 

One of the weakest areas in coke is the boundary 

area between the IMDC and RMDC regions, which 

often has elongated pores capable of promoting 

cracking under mechanical stress. Mineral 4 segments 

this boundary (Fig. 9) and calculates parameters 

describing the walls that connect IMDC and RMDC as 

well as the voids between them contained within the 

boundary layer. As a result, quantitative descriptors of 

IMDC-RMDC connectivity are provided which can be 

correlated with coke strength qualifiers. Such 

parameters include average thickness of RMDC walls 

connected to IMDC in the boundary area, abundance of 

RMDC walls in the boundary area of IMDC, average 

distance between RMDC walls in the IMDC boundary 

area and maximal distance between RMDC walls in the 

IMDC boundary area. 

The  capabilities  of  the  software  also  allow 

measurement of many other important parameters 

characterising coke structure, such as, average wall 

thickness considering the whole coke matrix, average 

wall thickness considering only RMDC part of the 

matrix, or average wall thickness considering only 

connections between relatively large agglomerations in 
 

 
(a) 

  
(b)                                                    (c) 

Fig. 9  Segmentation of IMDC boundary layers: (a) initial image, (b) identified IMDCs and RMDCs, and (c) IMDCs only 

with allocated boundary layers, (IMDC—magenta, RMDC—blue and porosity—yellow). 
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the coke matrix (represented by large areas of IMDC) 

and large coagulations of RMDC. The capability of 

measuring the presence of one phase within another 

allows the measurement of average recordable porosity 

within a particular phase such as IMDC or RMDC. 

A discussion of the complete range of capabilities of 

Mineral 4/Recognition 4 in coke structure 

characterisation is beyond the scope of this paper. 

More details can be found in the ACARP (Australian 

Coal Association Research Program) report “Optical 

image analysis of coke structure and the effects of 

structural parameters on coke strength” [29]. 

6. Lump and Pellet Characterisation 

The Mineral 4/Recognition 4 software also has the 

capability to analyse the structures of coarse particles 

such as pellets or large lumps of ore or sinter. As the 

analysis of minerology, porosity and texture is 

performed under a microscope, significant 

magnification is required for proper identification of 

mineralogy, porosity and texture, and so individual 

images cover only a small area of the sample. However, 

for effective characterisation of such materials, it is 

necessary to analyse large areas, such as the whole 

section of an indurated pellet, so that the size of the 

total image, combined from the individual images, can 

be hard to handle. Another issue encountered when 

conducting characterisation of these larger material 

types is that the individual image should be small to 

ensure there are enough points in the spatial 

distribution of the studied characteristic, but at the 

same time it should be large enough to be capable of 

averaging out local irregularities. 

To solve these problems, while maintaining the 

capability to combine individual images into large 

Mosai X images, Mineral 4 further combines Mosai X 

images into “panorama” images. All mosaic images 

can be separately processed, and the results of such 

processing presented as tables and graphs. 

Fig. 10a shows a “panorama” image of an indurated 

pellet manufactured from a magnetite concentrate. Due 

to the oxidising conditions during induration, thin rims 

of hematite can be seen around some magnetite grains 

(Fig. 10c). Fig. 11 demonstrates Mineral 4 mineral 

mapping of the images in Fig. 10a. In these images 

magnetite, is represented with the magenta colour, 

hematite with blue, porosity with yellow and small 

hardly recognisable binder areas with green. 

Fig. 12 demonstrates spatial distributions of 

magnetite, hematite and porosity in the pellet from Fig. 

10a. These smooth spatial distributions are obtained by 

applying a moving average procedure. Mineral 4 

allows adjustments of parameters determining 

resolution of such images. Spatial distributions in Fig. 

12 show that while there is some symmetry along one 

direction of the pellet, another direction is significantly 

asymmetrical, possibly due to asymmetrical processing 

(e.g. heating, asymmetrical gas distribution etc.) during 

induration. The image clearly identifies an outer ring of 

hematitic material caused by the oxidation of the 

magnetite as the pellet was indurated. Such information 

can assist the induration plant operator in determining 

if the firing cycle was sufficiently rigorous. The 

abundances can also be output to Excel, both as the 

whole distribution matrix for each mineral and data 

averaged for images that are at the same distance from 

the centre, and used for further calculations or 

visualisation as in the example in Fig. 13. 

7. Conclusions 

Particles with the same mineralogy but different 

texture can behave very differently during downstream 

processing. Consequently, access to objective textural 

information  for  iron  ores  is  very  valuable  for 

understanding and predicting their processing behaviour. 

Optical image analysis, in comparison with SEM 

methods, can better identify micro-porosity and segment 

different iron oxides and oxyhydroxides. The superior 

capability of optical image analysis together with the 

specific capabilities of the Mineral 4/Recognition 4 

system to perform identification of different textures, 

non-opaque minerals and provide comprehensive 
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(a)                                          (b) 

 
(c) 

Fig. 10  (a) Whole pellet image (Ø 12.7 mm)—a combination of 18 × 18 Mosai X images where each image is a combination 

of 2 × 2 elementary images; (b) Mosai X image from the pellet area marked with arrow (magnetite—pink, hematite—white, 

porosity—dark); (c) a closer view of image (b). 
 

  
(a)                                         (b) 

Fig. 11  (a) Mineral mapping of the pellet in Fig. 10a; (b) mineral mapping of Mosai X image from Fig. 10b. 
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Fig. 12  Spatial distributions of magnetite (left), hematite (centre) and porosity (right) of the pellet on Fig. 10a. Abundances 

calculated for each of the 18 × 18 Mosai X images, then an adaptive moving average is used to smooth the visualisation. 
 

 
Fig. 13  Graph of average hematite (Hem), magnetite (Mag) and porosity (Por) abundances as a function of distance from 

pellet centre. 
 

image analysis allow automatic textural classification of 

particle sections. The resulting data output files 

provide comprehensive textural, dimensional, 

liberation, association and other capacious information 

about each texture class, group of particles or any 

sub-group defined by a flexible choice of criteria. 

Textural identification and multi-thresholding 

procedures, which are the key features in Mineral 4 for 

mineral identification, allow identification of different 

morphologies of the same mineral. This is very 

important for iron sinter characterisation where 

Mineral 4 is capable of automatically segmenting 

primary hematite from secondary hematite, and 

distinguishing between the three different types of 

SFCA. Such automated identification removes the 

subjectivity that may be present during manual mineral 

identification by mineralogist/petrologist. Mineral 

4/Recognition 4 also has significant advantages in 

comparison with manual point counting in 

identification of micro-porosity, glass, and 

characterisation of microporous phases. 

Textural identification also allows for differentiation 

of IMDC and RMDC in cokes. This allows for 

comprehensive characterisation of IMDC, RMDC and 

porosity distributions, with all data calculated with 

averaging by number and by area. Structural 

characterisation of the coke matrix also gives additional 

comprehensive information, including description of 

the boundaries between IMDC and RMDC, the average 

wall thickness and the porosity of IMDC. 
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Characterisation of relatively large objects such as 

pellets and lumps of iron ore and sinter is also very 

important for research related to the iron making 

industry. By combining Mosai X images into large 

“panorama” images, Mineral 4/Recognition 4 provides 

the opportunity to study such macro-objects as a whole. 

In conclusion, this article clearly demonstrates that 

the unique features and capabilities created in CSIRO’s 

Mineral 4/Recognition 4 software allow 

comprehensive and, in some cases, unique 

characterisation of important features relevant to iron 

making researchers and industry plant operators. 
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