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Abstract: Most of the spatially moving vehicles and game controllers use a 2-3 DOF (degrees of freedom) joystick to manipulate 
objects position. However, most of the spatially moving vehicles have more than 3 degrees of freedom, such as helicopters, quadrotors, 
and planes. Therefore, additional equipment like pedals or buttons is required during the manipulation. In this study, a passive Stewart 
platform based 6 degrees of freedom joystick was developed to control spatially moving objects. The Stewart platform mechanism is a 
6-degrees of freedom parallel mechanism, which has been used for simulators. The main challenge of using a parallel mechanism to 
manipulate objects is the computational burden of its forward kinematics. Therefore, an artificial neural network was used for the 
forward kinematic solution of the Stewart platform mechanism to obtain the fastest response. Linear potentiometers were used for the 
Stewart platform legs. A mathematical model of a quadrotor was used to test the capability of the joystick. The developed spatial 
joystick successfully manipulated the virtual quadrotor model. 
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1. Introduction 

The purpose of this study is to emphasize the 

difficulty of traditional manipulation techniques, which 

are using a multi-point control such as a lever, pedals, 

and collective lever. This multi-tasking event is 

obviously difficult considering learning, teaching and 

application procedure. Therefore, the main objective of 

this study is gathering control tools of any SMV 

(spatially moving vehicles) into one hand. The 

advantages of one-handed manipulation are 

investigated with several scenarios, including 

reflection of external forces to SMV to the user’s hand 

and force feedback control of manipulation mechanism. 

In this research, a linear potentiometer based SP 

(Stewart platform) as a man-machine interface is 

proposed as a means of mechatronic design, kinematic 

analysis, and simulation environment to manipulate 

SMVs. Through the paper, first, the analysis of SP 
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mechanism for kinematics and design of the system is 

investigated. Then, a “Quadrotor” is modeled using the 

Newton-Euler approach, a PID (proportional integral 

derivative) controller is applied to the derived model 

and a user interface is constructed for operating both 

the Quadrotor model and SPM (Stewart platform 

mechanism) simultaneously. Lastly, the virtual 

Quadrotor model is manipulated with a real Stewart 

Platform Joystick.  

Stewart-Gough Platform is a parallel mechanism 

which was first used as an universal tire test machine 

and a flight simulator by V. E. Gough (1956) and D. 

Stewart (1965), connecting a stationary lower and a 

mobile upper platform to the two ends of six actuators 

in parallel and obtaining three translational and three 

rotational DOF (degrees of freedom) in space [1, 2].  

Many methods were studied for the solution of the 

kinematics of the SPM. A major piece of work on 

solving the forward kinematics of SPM was using the 

Bezout method [3]. This method allows deriving the 

kinematics from a 16th degree equation with one 

unknown variable. The fact that one needs a numerical 

solution to obtain the final equation is one of the 
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disadvantages of the method. Obtaining the answer 

from 16 solutions is one of the disadvantages of this 

method. Another solution method uses 

Newton-Rhapson algorithm and this was presented for 

solving the forward kinematics, iteratively [4]. This 

method usually converges to the solution. However, if 

one of the encoder data is not clear or wrong, the 

solution is not able to converge. A nonlinear observer 

was designed for predicting the 3 rotational and 3 

translational displacements of the SPM by using the 

state variables of the mechanism [5]. Artificial Neural 

Networks are also used for solving the forward 

kinematics of the SPM [6, 7]. This method is the best 

suitable solution for real-time mechanisms.  

Human and robot interaction introduces new control 

requirements over time [21]. One of them is the force 

control. Investigations and comparisons were made on 

many force control method ranging from the simplest to 

the most complex [8]. An active stiffness control, which 

is one of the force control methods, was applied with the 

help of a program for controlling 3 translational and 3 

rotational axes [9]. A pneumatically actuated 6×6 SPM 

was developed for endoscopic surgery. The relationship 

between the endoscope and the surface was provided by 

a force control algorithm [10]. Force control and tactile 

control methods, which are very important in terms of 

human-machine interaction, are frequently used in 

rehabilitation systems. 6×6 SPM was designed for the 

rehabilitation of the ankle with a user interface [11]. A 

3-axis parallel robot was developed for the 

rehabilitation of the wrist and system performance was 

investigated including the therapist effect [12, 13]. A 

3×3 Stewart platform manipulator has been proposed 

to manipulate spatially moving vehicles with force 

feedback [18]. This mechanism has six linear actuators 

and a force/torque sensor to sense the applied force and 

it successfully manipulated spatially moving vehicles. 

Impedance force control method [19] has been applied 

to the manipulator. However, despite its small size, it is 

still too heavy for practical applications.  

UAV (unmanned air vehicles) have become a center 

of attraction due to the contributions of the military, 

rescue and aerospace technologies. An important part 

of research and development activities is the 4-rotor 

aircraft quadrotor, which has 4 DOF and motion 

capability at 6 axes. The Newton-Euler method has 

been used in many studies for obtaining the 

mathematical model of the quadrotor [14, 15]. 

Traditional and robust control algorithms were also 

applied to a quadrotor [15-17]. A simplified 

deterministic model of a quadrotor was presented for 

investigating the problem of planning/replanning [20]. 

In general, quadrotors and other aerial vehicles have 

multiple manipulation points. The main disadvantage 

of the developed manipulation mechanism is that the 

user must carry out multiple tasks at the same time in a 

standard multi-point manipulation. Briefly, the 

contribution of this work is the designed mechanism 

that allows the user to control all tasks from a single 

point. Section 2.1 describes the mechatronic design of 

the passive Stewart platform mechanism. Section 2.2 

presents the forward kinematic solution of the 

mechanism. Section 2.3 describes the user interface of 

the software and the specifications of the mathematical 

model of the quadrotor. Section 3 consists of the 

experimental results and discussions. Section 4 is the 

conclusion section and addresses future works. 

2. Materials and Methods 

2.1 Mechatronic Design and Specifications 

The legs of the SP consist of six linear 

potentiometers. The resistance of these potentiometers 

varies from 0 to 5 kΩ with the range of 0 to 100 mm. 

The diameter of the upper ring (mobile ring) of the SP 

is 100 mm. The diameter of the lower ring (stationary 

ring) is 140 mm.  

Potentiometers were connected both to the upper and 

lower part of the SP with spherical joints. Analog input 

ports of an Atmega powered Arduino Uno board were 

used both to obtain voltage values from potentiometers 

and to send position and orientation values of the SP to 

the computer, which are obtained from forward 
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Where; Ib  is 3×3 identity matrix, Jq  is the 3×3 
inertia matrix of quadrotor, qV


 is the linear velocity 

vector of the quadrotor, q
  is the angular velocity 

vector of the quadrotor,  is the total force vector of 

the quadrotor,  is the total torque vector of the 

quadrotor.  

Equations of motion of quadrotor model can be 

calculated using Eq. (4). 

(5) 

(6) 

   (7) 

 (8) 

 (9) 

 (10) 

From the given equations of motion, thrust factor of 

the quadrotor is demonstrated by b , d  is the drag 

factor, i is the angular velocity of the propellers (i=1 

to 4), FR(x,y,z )
q

is the external forces acting on quadrotor 

from the axes x, y, and z, Fh(x,y,z)  is the force caused 

by air resistance from the axes x, y, and z, 
t  is the 

total rotor velocities considering the direction of 

rotation,  x,y,z  is the linear velocities of quadrotor. 
For the purpose of the study, position of the 

quadrotor mechanism was intended to manipulate by 

the SP. Because of this reason, only 4 position 
controllers designed. Motion on axes  q, q, q, z  

are directly related to control inputs. Therefore, 

propeller velocities must be including the control 

inputs on both 4 axes. Motion on axes x and y are 
related to the displacement on axes  q  and  q , 

respectively. For instance, if there is an angular motion 
on axis  q , quadrotor moves along the y-axis. 

Therefore, 4 PID controllers designed for controlling 

the quadrotor mechanism:  

 

  (11) 

  (12) 

  (13) 

  (14) 
Eqs. (11-14) are the contribution of controllers to the 

actual rotor velocities. Because of the geometric design 

of the system, each rotor velocity must be calculated by 

using related controllers. Controller coefficients
kp(z,, , ) , kd(z, , , ) , ki(z, , , )  are proportional, 

derivative and integral coefficients, respectively. 

Schematic representation of controllers can be seen in 

Fig. 4.  

All motors have equal contribution on the motion 

along z-axis of the quadrotor. Therefore, Eq. (11) must 

be driving all rotor velocities. 2nd and 4th motors have 

contribution on the motion around q . For this reason, 

Eq. (12) must be driving 2nd and 4th rotor velocities 

considering the direction of motion. Similarly, Eq. (13) 

must be added 1st and 3rd rotor velocities because of 

the contribution on the motion around q . All rotors are 

effective on the motion of quadrotor around  q
. 

Therefore, Eq. (14) must be driving all rotor velocities 

as well. Final rotor velocities can be expressed as the 

given equation series below. 

1 cz c c

2 cz c c

3 cz c c

4 cz c c

   (15) 

The reference values of the controller were obtained 

from the output of the forward kinematics of the SP 

joystick. The position feedback of the quadrotor was 

obtained from the dynamic equations of the quadrotor. 

The PID coefficients of the controllers were decided 

after a series of simulation considering the settling time, 

overshoot and steady state error values.  

The developed user interface of the test program can 

be seen in Fig. 5. The user interface allows the user to 
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4. Conclusions 

Manipulation of the spatially moving objects is 

important considering both the cost of the aerial 

vehicles and safety of passengers. Multiple 

manipulations might distract the user. The reason for 

many accidents is the distraction of the pilot or the user. 

Therefore, a passive 6 DOF Stewart platform based 

joystick was designed for single point manipulation. 

Classical iterative solutions of the forward kinematics 

of the SP cause time delays and errors considering 

real-time applications. Therefore, ANN was used for 

forward kinematics solution of the SP. A dynamic 

model of a quadrotor was derived for testing the 

manipulation of the SP joystick. PID controllers were 

used to control the axes of the quadrotor. A user 

interface was built containing the dynamic model of the 

quadrotor. Finally, the quadrotor model was 

successfully manipulated from a single point with the 

SP joystick. 

It is very probable that the development of one point 

manipulation will become the center of attraction for 

most disciplines including simulation or game 

development. The developed low-cost Stewart 

platform joystick solution promises to open a new era 

for man-machine interface. Considering the future 

works, haptic feedback should be provided for the user 

to sense both the inertial and other external forces. 
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