J. Chem. Chem. Eng. 10 (2016) 238-240 doi: 10.17265/1934-7375/2016.05.007

¹⁷⁷Hf as a Competitor in the Synthesis of ¹⁷⁷Lu-DOTAtate

José de Souza Caldeira Filho

Centro de Tecnologia das Radiações. Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN/SP. Av.

Abstract: This study reveals the interference of ¹⁷⁷Hf, a decay product of ¹⁷⁷Lu, in the synthesis of ¹⁷⁷Lu-DOTAtate. In the experiments we followed three ¹⁷⁷Lu t_{1/2}. The molar ratio Lu: DOTAtate used was calculated for each decay, in two situations: 1) without considering the influence of ¹⁷⁷Hf; 2) considering the influence of ¹⁷⁷Hf. The results compare both the calculated molar ratio and the radionuclide incorporation yields (%) in these situations. The yields increase when ¹⁷⁷Hf influence is considered. This suggests that ¹⁷⁷Hf is an important competitor for DOTAtate binding site. These data are relevant in the synthesis of the radiopharmaceutical ¹⁷⁷Lu-DOTAtate with high specific activity.

Key words: Hafnium, ¹⁷⁷Lu-DOTAtate, molar ratio, radiopharmaceutical.

1. Introduction

In the last two decades, an increasing interest for the ¹⁷⁷Lu (Lutetium) radioisotope has been observed in Nuclear Medicine for the development of the radiopharmaceutical somatostatin peptide analogs [1, 2]. These radiopharmaceuticals have been used for diagnosis, but mainly for therapeutic use [3-5] in neuroendocrine tumors.

The 177 Lu is prepared by bombarding a target of enriched 176 Lu with neutrons. At the end of bombardment a typical lot of Lu contains $\sim 6\%$ 177 Hf (Hafnium), $\sim 23\%$ 177 Lu, and $\sim 70\%$ 176 Lu [6]. These numbers will vary somewhat according to the specific activity of the radioisotope and the radioactive decay. The half-life ($t_{1/2}$) of 177 Lu is 6.7 days, and it decays to 177 Hf.

Under the conditions normally used for the synthesis of radiopharmaceuticals from DOTA-peptides, the literature has reported that ¹⁷⁷Hf does not interfere with the ¹⁷⁷Lu labeling [7, 8]. Also, it was reported that the presence of "free" ¹⁷⁷Hf in radiolabeling solutions does not compete for ligands during the preparation of ¹⁷⁷Lu-AMBA [6], which is

Corresponding author: José de Souza Caldeira Filho, Ph.D., research field: new radiopharmaceuticals study, the use of nuclear technology in agriculture-seed germination and management-power and organizational culture.

another radiopharmaceutical.

This paper presents a study that suggests a competition of ¹⁷⁷Hf with ¹⁷⁷ Lu for the binding site in DOTA, in the synthesis of the radiopharmaceutical ¹⁷⁷Lu-DOTAtate.

2. Experimental Section

The peptide DOTAtate (ANASPEC, USA), was diluted in a sodium acetate buffer 0.4 M pH 4.5 (1 $\mu g/mL$).

The ¹⁷⁷Lu radioisotope (53 Ci/mg) was from the Oak Ridge National Laboratory (ORNL, USA) in the form of ¹⁷⁷LuCl₃ in HCl 0.1 M.

The molar ratio Lu:DOTAtate used in the radiopharmaceutical synthesis was calculated for each decay in two different situations: 1) without considering the influence of ¹⁷⁷Hf as a competitor; 2) considering the influence of ¹⁷⁷Hf as a competitor in the synthesis.

The synthesis of the radiopharmaceutical ¹⁷⁷Lu-DOTAtate was carried out in an ammonium acetate buffer 0.5 M, pH 7.0, temperature 95 °C, 350 rpm for 30 minutes.

The experiments related to the synthesis of $^{177}\text{Lu-DOTA}$ tate were performed 11, 18 and 27 days after the production of ^{177}Lu , respectively, 1.64 $t_{1/2}$, 2.68 $t_{1/2}$ and 4.03 $t_{1/2}$.

	· · · · · · · · · · · · · · · · · · ·		, ,	
Half-life (t _{1/2})		1		2
	Without considering the influence of ¹⁷⁷ Hf		Considering the influence of ¹⁷⁷ Hf	
	Molar ratio (*)	Radionuclide incorporation	Molar ratio (*)	Radionuclide incorporation
	Lu:DOTAtate	yields (%)	Lu:DOTAtate	yields (%)
1.64	1:4.4	5.2 ± 1.5	1:6.7	88 ± 9
2.68	1:8.1	38.1 ± 0.9	1:13.5	98.2 ± 0.7
4.03	1:19	14.4 ± 2.2	1:34.3	69.0 ± 2.1

Table 1 Comparison between the calculated molar ratio Lu: DOTAtate and ¹⁷⁷Lu-DOTAtate radionuclide incorporation yields (%) in two situations: 1) without considering the influence of ¹⁷⁷Hf; 2) considering the influence of ¹⁷⁷Hf.

(*) For details regarding the calculations of molar ratios [9].

All the solutions used were prepared with Milli-Q water, previously treated with chelex 100 (Biorad) chelating resin.

The reaction yield, evaluated as radionuclide incorporation yields (%), was studied in room temperature by ascending chromatography in ITLC-SG, with sodium acetate buffer 0.1 M, pH 5.0 as a mobile phase.

The results are expressed as mean \pm SD, $n \ge 3$.

3. Results and Discussion

The molar ratios Lu:DOTAtate calculated for the experimental design followed by the ¹⁷⁷Lu radionuclide incorporation yield (%) obtained experimentally are presented in Table 1, in two situations: without considering and considering the influence of ¹⁷⁷Hf.

Experiments conducted using the molar ratio Lu:DOTAtate calculated without the presence of 177 Hf result in low incorporation of radioisotope in the radiopharmaceutical. When the experiments are conducted considering the presence of 177 Hf in the calculations, the incorporation of the radioisotope in the radiopharmaceutical is relatively higher. This becomes more evident when the elapsed time in 177 Lu half-life is greater, for example in $4.03 \, t_{1/2}$.

A radioisotope incorporation greater than 95%, which is suitable for clinical use of the radiopharmaceutical ¹⁷⁷Lu-DOTAtate, was not always achieved, since we dealt with limit molar ratios. Thus, small increases in the amount of DOTAtate beyond the limit calculated with the presence of ¹⁷⁷Hf would

lead to incorporations greater than 95%.

4. Conclusion

The results indicate that ¹⁷⁷Hf, a decay product of ¹⁷⁷Lu, competes for the DOTA binding site. This discovery was possible due to the schematization with molar ratios (shown in Table 1), which was developed along the research. This procedure is not common in the literature, which typically uses a notation of the radioisotope activity (mCi) in relation to the mass of DOTAtate (μg).

These data will be relevant in the synthesis of the radiopharmaceutical ¹⁷⁷Lu-DOTAtate with high specific activity, to be used in peptide receptor radionuclide therapy.

Acknowledgment

The author wishes to thank the colleague from Universidade Federal do ABC, Prof. Dr. Alexander de Freitas, for stimulating discussions.

References

- [1] Krenning, E. P., Valkema, R., Kwekkeboom, D. J., De Herder, W. W., Van Eijck, C. H., De Jong, M., Pawels, S., and Reubi, J. C. 2005. "Molecular Imaging as *In Vivo* Molecular Phatology for Gastroenteropancreatic Neuroendocrine Tumours: Implications for Follow-up after Therapy." *Journal of Nuclear Medicine* 46: 76S-82S.
- [2] Reubi, J. C., Macke, H. R., and Krenning, E. P. 2005. "Candidates for Peptide Receptor Radiotherapy Today and in Future." *Journal of Nuclear Medicine* 46 (1): 678-75S.
- [3] Schmitt, A., Bernhardt, P., Nilsson, O., Ahlman, H., Kolby, H. R., Maecke, H. R., and Forssel, A. 2004.

- "Radiation Therapy of Small Cell Lung Cancer with ¹⁷⁷Lu-DOTA-Tyr³-octreotate in an Animal Model." *Journal of Nuclear Medicine* 45: 1542-8.
- [4] Teunissen, J. J. M., Kwekkeboom, D. J., and Krenning, E. P. 2004. "Quality of Life in Patients with Gastroenteropancreatic Tumors Treated with [177Lu-DOTA⁰, Tyr³]octreotate." *Journal of Clinical Oncology* 13: 2724-9.
- [5] Forrer, F., Usijarvi, H., Storch, D., Maecke, H. R., and Mueller, B. 2005. "Treatment with ¹⁷⁷Lu-DOTATOC of Patients with Relapse of Neurondocrine Tumors after Treatment with ⁹⁰Y-DOTATOC." Journal of Nuclear Medicine 46: 1310-6.
- [6] Aldo, C., Nicola, d'A., Edmundo, M., Hanh, D. N., Silvio, A., Rolf, E. S., and Karen, E. L. 2009. "Isolation of a Complex Formed by β-Decay of a 177Lu-Labeled Radiotherapeutic Compound and NMR Structural Elucidation of the Ligand and Its Lu and Hf Complexes." *Inorganic Chemistry* 48: 3114-24.

- [7] Breeman, W. A. P., De Jong, M., Visser, T. J., Erion, J. L., and Krenning, E. P. 2003. "Optimising Conditions for Radiolabelling of DOTA-peptides with ⁹⁰Y, ¹¹¹In and ¹⁷⁷Lu at High Specific Activities." *European Journal of Nuclear Medicine and Molecular Imaging* 30: 917-20.
- [8] Breeman, W. A. P. 2012. "Practical Aspects of Labeling DTPA-and DOTA-Peptides with ⁹⁰Y, ¹¹¹In, ¹⁷⁷Lu, and ⁶⁸Ga for Peptide-Receptor Scintigraphy and Peptice-Receptor Radionuclide Therapy in Preclinical and Clinical Applications." UNM College of Pharmacy, v. 16, lesson 5.
- [9] Caldeira, Filho, J. S. 2009. "Síntese, Análise, Purificação e Biodistribuição em Modelo Animal do Radiofármaco 177Lu³+-DOTATATO Para uso DiagnóStico e Terapêutico em Tumores Neuroendócrinos." Ph.D. Thesis, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo. Recuperado em 2014-08-23, de http://www.teses.usp.br/teses/disponiveis/85/85131/tde-0 2062009-160531/pt-br.php.