
Journal of Communication and Computer 13 (2016) 103-115
doi:10.17265/1548-7709/2016.03.001

Real-time Task Scheduling in Heterogeneous

Multiprocessors System Using Hybrid Genetic

Algorithm

Myungryun Yoo

Department of Computer Science Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, Japan

Abstract: The real-time multiprocessor scheduling problem is one of the NP-hard problems. Furthermore, there are no papers which
are concerned to heterogeneous multiprocessors system. This paper proposes a new real-time task scheduling algorithm using hGA
(hybrid genetic algorithm) on heterogeneous multiprocessor environment. In solution algorithms, the GA (genetic algorithm) and the
SA (simulated annealing) are cooperatively used. In this method, the convergence of GA is improved by introducing the probability
of SA as the criterion for acceptance of new trial solution. The objective of proposed scheduling algorithm is to minimize total
tardiness. The effectiveness of the proposed algorithm is shown through simulation studies. In simulation studies, the results of
proposed algorithm show better than that of other algorithms.

Key words: Genetic algorithm, real-time task scheduling, heterogeneous multiprocessor.

1. Introduction

In hard real-time system, tardiness can be

catastrophic. The goal of hard real-time scheduling

algorithms is to meet all tasks’ deadlines, in other

words, to keep the feasibility of scheduling through

admission control. However, in the case of soft

real-time systems, slight violence of deadlines is not

so critical [1].

Traditionally, the performance criteria of algorithm

for TSP (task scheduling problem) are throughput,

utilization of processors, waiting time of tasks, etc. In

hard real-time system, the performance of scheduling

algorithm is measured by its ability to generate a

feasible schedule for a set of real-time tasks. Typically,

there is RM (rate monotonic) and EDF (earliest

deadline first) derived scheduling algorithms for hard

real-time system with uniprocessor [2, 3]. They

guarantee the optimality in somewhat restricted

environments. However, these algorithms have some

drawbacks to cope with soft real-time system related

Corresponding author: Myungryun Yoo, Ph.D., research
field: real time OS.

resource utilization and pattern of degradation under

the overloaded situation. The objective of scheduling

task in soft real-time system is to minimize total

tardiness. As the growing of soft real time applications,

the necessity of scheduling algorithm for soft

real-time system is on the increase and several

researches for soft real time system are reported. rrPS

(rate regulating proportional share) scheduling

algorithm based on stride scheduler by Kim [4] and

mPS (modified proportional share) scheduling

algorithm by Yoo [5] are designed for tasks in soft

real-time system. However, these algorithms also can

not show the graceful degradation of performance

under the overloaded situation and are restricted in

uniprossor system. The optimal assignment of tasks to

multiprocessor is, in almost all practical cases, an

NP-hard problem [6]. Consequently various modern

heuristics based algorithms have been proposed for

practical reason.

Recently, several approaches GA are proposed.

Mitra and Ramanathan proposed a GA for scheduling

of nonpreemptive tasks with precedence and deadline

D
DAVID PUBLISHING

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 104

constraints [7]. Lin and Yang presented a hybrid GA,

where different operators are applied at different stage

of the lifetime, for scheduling partially ordered

nonpreemptive tasks in a multiprocessor environment

[8]. Monnier et al. presented a GA implementation to

solve a real-time nonpreemptive task scheduling

problem [9]. Oh and Wu presented a multiobjective

GA for scheduling nonpreemptive tasks in soft

real-time system with multiprocessors [10]. However,

these algorithms assume that the performance of all

processors is same.

In this paper, we propose a new scheduling

algorithm for nonpreemptive tasks with precedence

relationship in soft real-time heterogeneous

multiprocessor system. In solution algorithms, the GA

and the SA (simulated annealing) are cooperatively

used [11]. In this method, the convergence of GA is

improved by introducing the probability of SA [12] as

the criterion for acceptance of new trial solution.

However, it is hard to find the optimum solution by

only applying the genetic operators. The objective of

proposed scheduling algorithm is to minimize the total

tardiness.

The rest of the paper is organized as follows: In

Section 2, we explain sr-TSP (soft real-time task

scheduling problem) in heterogeneous multiprocessors

system and the problem is mathematically formulated.

Section 3 introduces the GA combined with SA

methods and describes implementations used for this

problem. Then, the experimental results are illustrated

and analyzed in Section 4. Finally, Section 5 provides

discussion and suggestions for further work on this

problem.

2. Soft Real-time Task Scheduling Problem
and Mathematical Model

In this study, we consider the problem of

scheduling the tasks with precedence and timing

constrained task graph on a set of heterogeneous

processors in a way that minimizes the total tardiness

F(x, tS) under the following conditions:

(1)All tasks are nonpreemptive;

(2) Every processor processes only one task at a

time;

(3) Every task is processed on one processor at a

time;

(4) Only processing requirements are significant;

memory, I/O, and other resource requirements are

negligible.

The sr-TSP is formulated under the following

assumptions: Computation time and deadline of each

task are known. A time unit is artificial time unit. Soft

real-time tasks scheduling problem in heterogeneous

multiprocessors system to minimize the total tardiness

is formulated as follows:

F)(min Stx,

 
  












N

i

M

m
imiim

S
i xdct

1 1

)(,0max (1)

idtt i
S

i
E

i  ,t.s. (2)

iττxctt ijjm

M

m
jm

E
j

E
i  



),(,
1

pre (3)

ix
M

m
im 



,1
1

 (4)

mixim ,},1,0{  (5)

In above equations, notations are defined as

follows:

-Indices

i, j : task index, i, j = 1,2,…,N

m: processor index, m = 1, 2,…, M

-Parameters

G = (T, E) : task graph

T = {1, 2, …, N}: a set of N tasks

E = {eij}, i, j=1, 2,…,N, I ≠ j : a set of directed

edges among the tasks representing

precedence relationship

i : the I th task, i = 1, 2,…, N

eij : precedence relationship between task i and task

j

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 105

pm : the m th processor, m = 1, 2,…,M

cim: computation time of task i on processor pm

di : deadline of task i

pre*(i): set of all predecessors of task i

suc*(i): set of all successors of task i

pre(i): set of immediate predecessors of task i

suc(i): set of immediate successors of task i

ti
E : earliest start time of task i














 




i
xct

E

t
jm

M

m
jm

E
j

ijj
E

i

ij

,
},{max

)τ,τ(:τ,0

1
)τ(τ

otherwise

if

*pre

 (6)

ti
F : finish time of task i

idxctt i

M

m
imim

S
i

F
i  



},,min{
1

 (7)

-Decision Variables

ti
S : real start time of task i






otherwise

task for selected isprocessorif

,0

τ,1 im
im

p
x (8)

Eq. (1) is the objective function in this scheduling

problem. Eq. (1) means to minimize total tardiness of

tasks. Constraints conditions are shown from Eq. (2)

to Eq. (5). Eq. (2) means that task can be started after

its earliest start time, begin its deadline. Eq. (3)

defines the earliest start time of task based on

precedence constraints. Eq. (4) means that every task

is processed on one processor at a time. Fig. 1

represents the time chart of sr-TSP.

3. GA Approach Combined with SA

In this paper, solution algorithm is based on GA.

Several new techniques are proposed in the encoding

and decoding algorithm of genetic string and the

genetic operations are introduced for discussion. They

are explained in the following subsections.

3.1 Encoding and Decoding

A chromosome Vk, k = 1,2,…, popSize, represents

one of all the possible mappings of all the tasks into

the processors. Where popSize is the total number of

chromosomes in a generation. A chromosome Vk is

partitioned into two parts u(·), v(·). u(·) means

scheduling order and v(·) means allocation

information. The length of each part is the total

number of tasks. The scheduling order part should be

a topological order with respect to the given task

graph that satisfies precedence relationship. The

allocation information part denotes the processor to

which task is allocated.

Encoding procedure for soft real-time task

scheduling problem (sr-TSP) will be written as

follows:

procedure: Encoding for sr-TSP

input: task graph data set, total number of

processors M

output: u(·), v(·)

begin

l←1, W← ;

while (T ≠ )

j

i

j

i

cim cjM
di dj

p1

pm

pM

…
…

Fig. 1 The time chart of sr-TSP.

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 106

W ← W arg{i |pre*(i) =  , i };

T ← T- {i}, i∊ W;

while (W ≠ )

j ← random(W);

u(l) ← j ;

W ← W – {j };

pre*(i) ← pre*(i) – {j}, i;

m← random[1:M];

v(l) ← m ;

l ← l+1;

end

end

output u(·), v(·);

end

Where, W is temporary defined working data set for

tasks without predecessors. In encoding procedure,

feasible solutions are generated by respecting the

precedence relationship of task and allocated

processor is selected randomly.

Fig. 2 represents the example of this encoding

procedure.

Decoding procedure will be written as follows:

procedure: Decoding for sr-TSP

input: task graph data set, chromosome u(·), v(·)

output: schedule set S, total tardiness of tasks F

begin

l←1, F ← 0, S ← ;

while (l ≤ N)

i ← u(l);

m← v(l);

if (exist suitable idle time) then insert(i);

start(i);

update_idle();

F ← F +max{0,(ti
S+cim-di)};

S ← S  {(i, pm: ti
S – ti

F)};

l ← l+1;

end

output S, F

end

Where insert (i) means to insert i at idle time if i is

computable in idle time. At start (i), the real start time

of ith task ti
S and the finish time of i th task ti

F can be

calculated. updata_idle () means that the list of idle

time is updated if new idle time duration is occurred.

The objective value F(x, tS) and schedule set S is

generated through this procedure.

chromosome Vk

1331321v(·)

7654321l

7254163u(·)

1331321v(·)

7654321l

7254163u(·)

total number of processors M=3

task graph

1

2

3

4

5

6

7

data set

cim

7

24

10

9

13

10

5

ci3

4

25

12

8

12

11

3

ci2

-

7

7

-

4,5

-

2

suc(i)

3257

-226

2565

23104

-103

17122

-21

dici1i

cim

7

24

10

9

13

10

5

ci3

4

25

12

8

12

11

3

ci2

-

7

7

-

4,5

-

2

suc(i)

3257

-226

2565

23104

-103

17122

-21

dici1i

1

3
3
1

3
2
1

m

7

2
5
4

1
6
3

j

7

6
5
4

3
2
1

l


{7}

{7}
{7}{2}
{7}{2,5}
{7}{2,4,5}

{2,4,5,7}
{2,4,5,7}{1}
{2,4,5,7}{1,6}
{2,4,5,7}{1,3,6}

{1,2,3,4,5,6,7}
TW

1

3
3
1

3
2
1

m

7

2
5
4

1
6
3

j

7

6
5
4

3
2
1

l


{7}

{7}
{7}{2}
{7}{2,5}
{7}{2,4,5}

{2,4,5,7}
{2,4,5,7}{1}
{2,4,5,7}{1,6}
{2,4,5,7}{1,3,6}

{1,2,3,4,5,6,7}
TW

trace table

Fig. 2 The example of encoding procedure.

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 107

5)(xF

S={ (3, 1:0-10), (6, 2:0-25), (1, 3:0-5), (4, 1:10-20),
(5,3:10-20),(2, 3:5-10), (7, 1:25-30)}

Gantt chart

0 5 10 15 20 25 30

3 4 7
6

1 2 5

p1

p2

p3

tardiness

schedule S={(i,m:ti
S,ti

F)}

i: task number

m: processor number

ti
S: start time of i th task

ti
F: finish time of i th task

task graph

1

2

3

4

5

6

7

data set

30
10
20
20
5

25
10
ti

F

25177
5326

10355
10144
0313
0262
0131

ti
Smil

30
10
20
20
5

25
10
ti

F

25177
5326

10355
10144
0313
0262
0131

ti
Smil

trace table

chromosome Vk

1331321v(·)

7654321l

7254163u(·)

1331321v(·)

7654321l

7254163u(·)

cim

7

24

10

9

13

10

5

ci3

4

25

12

8

12

11

3

ci2

-

7

7

-

4,5

-

2

suc(i)

3257

-226

2565

23104

-103

17122

-21

dici1i

cim

7

24

10

9

13

10

5

ci3

4

25

12

8

12

11

3

ci2

-

7

7

-

4,5

-

2

suc(i)

3257

-226

2565

23104

-103

17122

-21

dici1i

Fig. 3 The example of decoding procedure.

Fig. 3 represents the example of decoding

procedure with chromosome in Fig. 2.

3.2 Evolution Function and Selection

The fitness function is essentially the objective

function for the problem. It provides a means of

evaluating the search node and it also controls the

selection process [13, 14].

The fitness function used for our algorithm is based

on the F(x, tS) of the schedule. Because we use the

roulette wheel selection, we convert the minimization

problem to maximization problem, that is, the used

evaluation function is then

kFVeval k ),(/1)(Stx, (9)

Selection is the main way GA mimics evolution in

natural systems: fitter an individual is, the highest is

its probability to be selected. For selection, the

commonly strategies called roulette wheel selection [9,

15] has been used.

3.3 GA Operators

We use one-cut crossover. This operator creates two

new chromosomes (proto-offspring) by mating two

chromosomes (the parent). The one-cut crossover

procedure will be written as follows:

procedure: One-cut Crossover

input: parent chromosomes u1(·), v1(·), u2(·) , v2(·)

output: proto-offspring chromosomes u1’(·), v1’(·),

u2’(·), v2’(·)

begin

r ← random[1,N];

u1’(·) ← u1(·);

v1’(·) ← v1[1:r] // v2[r+1:N] ;

u2’(·) ← u2(·);

v2’(·) ← v2[1:r] // v1[r+1:N] ;

output proto-offspring chromosomes u1’(·), v1’(·),

u2’(·), v2’(·);

end

where u’(·), v’(·) are proto-offspring chromosome

and (·)1//(·)2 means to append (·)2 after (·)1. Fig. 4

represents the example of one-cut crossover

procedure.

For another GA operator, mutation, we use the

classical one-bit altering mutation [16].

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 108

1131213

7654123

1131213

7654123
parent 1

3311213

7654123

3311213

7654123

parent 2

r

1

5

3

4

31321

76321

1

5

3

4

31321

76321

proto-offspring 1

1131321

7456321

1131321

7456321
proto-offspring 2

Fig. 4 The example of one-cut crossover.

3.4 Improving of Convergence by the Probability of

SA

The convergence speed to local optimum of the GA

can be improved by adopting the probability of SA

(simulated annealing) [11, 12]. Even though the

fitness function value of newly produced strings is

lower than those of current strings, the newly

produced ones are fully accepted in early stages of

searching process. However, in later stages, a string

with lower fitness function value is seldom accepted.

The procedure of improved GA by the probability of

SA will be written as follows:

procedure: Improving of GA chromosome by the

probability of SA

input: parent chromosome V, proto-offspring

chromosomes V’,

temperature T, cooling rate of SA ρ

output: offspring chromosomes V’’

begin

r ← random[0,1];

E ← eval(V’)-eval(V);

if (E >0 || r <Exp(E/T))

V’’ ← V’;

else

V’’ ← V;

T ← T xρ;

output offspring chromosomes V’’

end

In this procedure, V and V’ mean parent

chromosome and proto-offspring chromosome. V’’

means offspring chromosome which is produced by

this procedure. The T means the temperature and the ρ

means the cooling rate of SA.

3.5 Reproduction and Population Replacement

During reproduction and replacement steps,

proto-offspring chromosomes are created by mating,

with probability pC, pairs of parents selected in the

current population. And then chromosomes are

mutated with probability pM, randomly using one of

the mutation operators [13]. The offspring

chromosomes are produced by the probability of SA.

Then new population is built through evaluating

chromosomes and selecting.

This iterative evolution process is stopped as soon

as one solution is found. However, we limit the

number of offspring produced to maxGen, in order to

avoid prohibitive calculation time, and to ensure that

the GA will stop when treating an infeasible problem.

Consequently, our proposed hGA (hybrid genetic

algorithm) obeys to the following algorithm:

procedure: sr-TSP by hGA+SA

input: task graph data set

output: best schedule set S

begin

t ←0;

initialize P(t) by encoding routine;

fitness eval(P) by decoding routine;

while (not termination condition) do

one-cut crossover P(t) to yield C’(t);

altering mutation P(t) to yield C’(t);

improving GA chromosome by the probability of

SA;

fitness eval(P, C) by by decoding routine;

select P(t +1) from P(t) and C(t);

t ← t +1;

end

output best schedule set S;

end

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 109

4. Validation

To validate proposed hGA, several numerical tests

are performed. We compared proposed hGA with

Monnier’s algorithm and proposed GA which is not

combined with SA. The Monnier’s algorithm is

concerned to homogeneous multiprocessors system

and the proposed hGA is designed for heterogeneous

multiprocessors system. As there are no algorithms

which are concerned to heterogeneous multiprocessors

system, we compared proposed hGA with Monnier’s

algorithm in heterogeneous multiprocessors system.

The Monnier’s algorithm is proposed by Monnier,

Beauvais and Deplanche [9]. This algorithm based on

simple GA uses linear fitness normalization technique

for evaluating chromosomes. The linear fitness

normalization technique is effective to increase

competition between similar chromosomes. However

this method is limited in special problem with similar

chromosomes. And in this algorithm, insertion method

is not used. In other words, although there is idle time,

task can not be executed in idle time. Numerical tests

are performed with randomly generated task graph.

We use P-Method [17] for generation task graph. The

P-Method of generating a random task graph is based

on the probabilistic construction of an adjacency

matrix of a task graph. Element aij of the matrix is

defined as 1 if there is a precedence relationship from

i to j; otherwise, aij is zero. An adjacency matrix is

constructed with all its lower triangular and diagonal

elements set to zero. Each of the remaining upper

triangular elements of the matrix is examined

individually as part of a Bernoulli process with

parameter ε, which represents the probability of a

success. For each element, when the Bernoulli trial is

a success, then the element is assigned a value of one;

for a failure the element is given a value of zero. The

parameter ε can be considered to be the sparsity of the

task graph. With this method, a probability parameter

of ε = 1 creates a totally sequential task graph, and ε =

0 creates an inherently parallel one. Values of ε that

lie in between these two extremes generally produce

task graphs that possess intermediate structures.

For tasks’ computation time and deadline, we use

random number based on exponential distribution and

normal distribution as follows:

cim
E = random value based on exponential

distribution with mean 5

cim
N = random value based on normal distribution

with mean 5

rE = random value based on exponential distribution

with mean ci
E

rN = random value based on normal distribution

with mean ci
N

di
E = ti

E + max{ cim
E , ∀m}+ rE

di
N = ti

E + max{ cim
N , ∀m}+ rN

where, cim
E and cim

N are the computation time of ith

task on mth processor based on exponential

distribution and normal distribution respectively. di
E

and di
N are the deadline of ith task based on

exponential distribution and normal distribution

respectively.

Numerical tests are performed with three task graph:

the number of tasks 10, 50 and 100.

4.1 Example 1

Fig. 5 represents the task graph which used in

example 1.

1

8

3

4

7

5

6

10

2

9

Fig. 5 Task graph with 10 tasks.

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 110

For generality of numerical test, Tables 1 and 2 are

data set generated by exponential distribution and

normal distribution of task graph in Fig. 5

respectively.

Tables 3 and 4 show the comparisons of results by

three different scheduling algorithms based on data in

Table 1. Tables 5 and 6 show the comparisons of

results by three different scheduling algorithms based

on data in Table 2. In Tables 3 and 5, F(x, tS) of each

algorithm is compared in different number of

processors. The results of proposed hGA are better

than that of other algorithms. However, total number

of processors without tardiness is same at all

algorithms. In Tables 4 and 6, some terms such as

makespan, computing time and the utilization of

processors are compared on the total number of

processors without tardiness. The computing time of

proposed hGA is a little bit longer than those of the

other two algorithms. However, this computation

time can be an acceptable time for long term scheduling.

Table 1 Data set of task graph with 10 tasks (exponential distribution).

i suc(i)
cim

di i suc(i)
cim

di ci1 ci2 ci3 ci1 ci2 ci3

1 8 5 3 10 13 6 9 2 4 7 24

2 6 3 7 12 17 7 - 2 15 4 13

3 4,5 3 4 1 12 8 - 3 5 4 18

4 6,7,8 2 16 6 12 9 10 5 5 8 27

5 6,10 12 2 4 27 10 - 1 5 6 29

Table 2 Data set of task graph with 10 tasks (normal distribution).

i suc(i)
cim

di i suc(i)
cim

di ci1 ci2 ci3 ci4 ci1 ci2 ci3 ci4

1 8 5 3 11 8 19 6 9 2 11 11 3 37

2 6 6 5 4 13 9 7 - 3 10 11 8 44

3 4,5 11 8 6 7 18 8 - 4 12 10 5 30

4 6,7,8 10 13 5 6 37 9 10 6 9 7 10 37

5 6,10 10 13 8 11 38 10 - 11 12 6 4 58

Table 3 Comparison with 3 algorithms for F(x, tS) based on data set in Table 1 (exponential).

Total number of processors Monnier’s GA Proposed GA Proposed hGA

1 17 16 14

2 9 10 6

3 0 0 0

Table 4 Comparison with 3 algorithms without tardiness based on data set in Table 1 (exponential).

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 3 3 3

make span 29 27 26

Computing time (msec) 22 23 32

Average utilization of processors 0.517179 0.550725 0.568571

Table 5 Comparison with 3 algorithms for F(x, tS) based on data set in Table 2 (normal).

Total number of processors Monnier’s GA Proposed GA Proposed hGA

1 59 60 54

2 28 28 13

3 7 5 3

4 0 0 0

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 111

Table 6 Comparison with 3 algorithms without tardiness based on data set in Table 2 (normal).

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 4 4 4

Makespan 36 38 33

Computing times (msec) 32 32 47

Average utilization of processors 0.515152 0.519683 0.525556

26

3610

7

25 50 31

42

34

11

18 13

29

16

8

35

20 22 9

1

21

5

12

27

3

23
24

38

46

37

49
45

6

39

30

41

47

14

32

15

44

4

19

17

40

43

28

33

48

2

Fig. 6 Task graph with 50 tasks.

The average utilization of processors and makespan of

hGA is more desirable than those of the others.

However, in these cases, total number of processors

without tardiness is same at all algorithms. The

distinction between proposed hGA and other

algorithms is not appeared because the total number of

tasks is very small.

4.2 Example 2

In this example, we use a task graph with 50 tasks.

Fig. 6 represents the task graph of 50 tasks case.

The data set of tasks representing time constraints is

omitted. Figs. 7 and 8 show that the comparison with

3 algorithms for F(x, tS) based on data in exponential

distribution and normal distribution respectively. In

Fig. 7 and 8, F(x, tS) of proposed hGA is smaller than

that of each algorithms.

In Tables 7 and 8, some terms such as makespan,

computing time and the utilization of processors are

compared on the total number of processors without

tardiness. Total number of processors without

tardiness of proposed hGA is smaller than that of

other algorithms. The computing time of proposed

hGA is a little bit longer than those of the other two

algorithms. However, this computation time can be an

acceptable time for long term scheduling. The average

utilization of processors of hGA is more desirable

than that of other algorithms.

4.3 Example 3

In this example, we use a task graph with 100 tasks.

Task graph and the data set of tasks representing

time constraints are omitted. Figs. 9 and 10 show

that the comparison with 3 algorithms for F(x, tS)

based on data in exponential distribution and

normal distribution respectively. In Figs. 9 and 10,

F(x, tS) of proposed hGA is smaller that that of each

algorithms.

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 112

0

50

100

150

200

250

0 2 4 6 8 10 12 14

to
ta

l
ta

rd
in

e
ss

total number of processors

Monnier's algorithm proposed GA proposed hGA

Fig. 7 Comparison with 3 algorithms for F(x, tS) based on exponential distribution.

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

to
ta

l
ta

rd
in

e
ss

total number of processors

Monnier's algorithm proposed GA proposed hGA

Fig. 8 Comparison with 3 algorithms for F(x, tS) based on normal distribution.

Table 7 Comparison with 3 algorithms without tardiness based on data in exponential distribution.

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 12 11 11

Makespan 35 37 39

Computing times (msec) 120 122 191

Average utilization of processors 0.518339 0.533981 0.532281

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 113

Table 8 Comparison with 3 algorithms without tardiness based on data in normal distribution.

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 16 16 14

makespan 47 50 49

Computing times (msec) 123 123 198

Average utilization of processors 0.500152 0.4909040 0.515035

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

to
ta

l
ta

rd
in

e
ss

total number processors

Monnier's algorithm proposed GA proposed hGA

Fig. 9 Comparison with 3 algorithms for F(x, tS) based on exponential distribution

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

to
ta

l
ta

rd
in

e
s
s

total number of processors

Monnier's algorithm proposed GA proposed hGA

Fig. 10 Comparison with 3 algorithms for F(x, tS) based on normal distribution

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 114

Table 9 Comparison with 3 algorithms without tardiness based on data in exponential distribution.

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 30 30 28

makespan 103 101 106

Computing times (msec) 497 499 818

Average utilization of processors 0.433293 0.437284 0.477352

Table 10 Comparison with 3 algorithms without tardiness based on data in normal distribution.

Terms Monnier’s GA Proposed GA Proposed hGA

of processors M 34 35 33

Makespan 132 130 137

Computing times (msec) 498 500 820

Average utilization of processors 0.523363 0.519823 0.527490

In Tables 9 and 10, some terms such as makespan,

computing time and the utilization of processors are

compared on the total number of processors without

tardiness. Total number of processors without

tardiness of proposed hGA is smaller than that of

other algorithms and the average utilization of

processors of hGA is more desirable than those of the

others.

5. Conclusions

A new task scheduling algorithm is proposed in this

paper. This algorithm is designed for non-preemptive

tasks in soft real-time multiprocessor system with the

communication time between processors and the

precedence relationship between tasks. In solution

algorithms, we proposed a method which combines

the moGA (multiobjective genetic algorithm) and the

SA. In this method, the convergence of GA is

improved by introducing the probability of SA as the

criterion for acceptance of new trial solution. The

objective of proposed scheduling algorithm is to

minimize the total tardiness and total number of

processors used simultaneously. For these conflicting

objectives, this paper combines AWA (adaptive

weight approach). From the numerical results, the

results of the proposed moGA are better than that of

other algorithms.

This determines the next step of our study. We plan

to design real-time tasks scheduling algorithm in

heterogeneous multiprocessors system.

Reference

[1] Krishna, C. M., and Kang, G. S. 1997. Real-Time System.
McGraw-Hill.

[2] Diaz, J. L., Garcia, D. F., and Lopez, J. M. 2004.
“Minimum and Maximum Utilization Bounds for
Multiprocessor Rate Monotonic Scheduling.” IEEE
Transactions on Parallel and Distributed Systems 15 (7):
642-53.

[3] Bernat, G., Burns, A., and Liamosi, A. 2001. “Weakly
Hard Real-Time Systems.” IEEE Transactions on
Computer Systems 50 (4): 308-21.

[4] Kim, M. H., Lee, H. G., and Lee, J. W. 1997. “A
Proportional-Share Scheduler for Multimedia
Applications.” In Proceedings of Multimedia Computing
and Systems, 484-91.

[5] Yoo, M. R. 2002. “A Scheduling Algorithm for
Multimedia Process.” Ph.D. dissertation, University of
Yeoung Nam, Korea.

[6] Yalaoui, F., and Chu, C. 2002. “Parallel
Machine Scheduling to Minimize Total Tardiness.”
International Journal of Production Economics 76 (3):
265-79.

[7] Mitra, H., and Ramanathan, P. 1993. “A Genetic
Approach for Scheduling Non-preemptive Tasks with
Precedence and Deadline Constraints.” In Proceedings of
the 26th Hawaii International Conference on System
Sciences, 556-64.

[8] Lin, M., and Yang, L. 1999. “Hybrid Genetic Algorithms
for Scheduling Partially Ordered Tasks in a
Multi-processor Environment.” In Proceedings of the 6th
International Conference on Real-Time Computer
Systems and Applications, 382-7.

[9] Monnier, Y., Beauvais, J. P., and Deplanche, A. M. 1998.
“A Genetic Algorithm for Scheduling Tasks in a
Real-Time Distributed System.” In Proceedings of 24th
Euromicro Conference, 708-14.

[10] Oh, J., and Wu, C. 2004. “Genetic-Algorithm-Based

Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 115

Real-time Task Scheduling with Multiple Goals.” Journal
of Systems and Software 71 (3): 245-58.

[11] Kim, H. C, Hayashi, Y., and Nara, K. 1997. “An
Algorithm for Thermal Unit Maintenance Scheduling
through Combined Use of GA, SA and TS.” IEEE
Transactions on Power Systems 12 (1): 329-35.

[12] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983.
“Optimization by Simulated Annealing.” Science 220
(4598): 671-80.

[13] Gen, M., and Cheng, R. 2000. Genetic Algorithms &
Engineering Optimization. John Wiley & Sons.

[14] Deb, K. 2001. Multi-objective Optimization Using

Evolutionary Algorithms. John Wiley & Sons.
[15] Gen, M., and Cheng, R. 1997. Genetic Algorithms &

Engineering Design. John Wiley & Sons.
[16] Jackson, L. E., and Rouskas, G. N. 2003. “Optimal

Quantization of Periodic Task Requests on Multiple
Identical Processors.” IEEE Transactions on Parallel and
Distributed Systems 14 (8): 795-806.

[17] Al-Sharaeh, S., and Wells, B. E. 1996. “A Comparison of
Heuristics for List Schedules Using the Box-method and
P-method for Random Digraph Generation.” In
Proceedings of the 28th Southeastern Symposium on
System Theory, 467-71.

