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Abstract: The real-time multiprocessor scheduling problem is one of the NP-hard problems. Furthermore, there are no papers which 
are concerned to heterogeneous multiprocessors system. This paper proposes a new real-time task scheduling algorithm using hGA 
(hybrid genetic algorithm) on heterogeneous multiprocessor environment. In solution algorithms, the GA (genetic algorithm) and the 
SA (simulated annealing) are cooperatively used. In this method, the convergence of GA is improved by introducing the probability 
of SA as the criterion for acceptance of new trial solution. The objective of proposed scheduling algorithm is to minimize total 
tardiness. The effectiveness of the proposed algorithm is shown through simulation studies. In simulation studies, the results of 
proposed algorithm show better than that of other algorithms. 
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1. Introduction 

In hard real-time system, tardiness can be 

catastrophic. The goal of hard real-time scheduling 

algorithms is to meet all tasks’ deadlines, in other 

words, to keep the feasibility of scheduling through 

admission control. However, in the case of soft 

real-time systems, slight violence of deadlines is not 

so critical [1].  

Traditionally, the performance criteria of algorithm 

for TSP (task scheduling problem) are throughput, 

utilization of processors, waiting time of tasks, etc. In 

hard real-time system, the performance of scheduling 

algorithm is measured by its ability to generate a 

feasible schedule for a set of real-time tasks. Typically, 

there is RM (rate monotonic) and EDF (earliest 

deadline first) derived scheduling algorithms for hard 

real-time system with uniprocessor [2, 3]. They 

guarantee the optimality in somewhat restricted 

environments. However, these algorithms have some 

drawbacks to cope with soft real-time system related 
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resource utilization and pattern of degradation under 

the overloaded situation. The objective of scheduling 

task in soft real-time system is to minimize total 

tardiness. As the growing of soft real time applications, 

the necessity of scheduling algorithm for soft 

real-time system is on the increase and several 

researches for soft real time system are reported. rrPS 

(rate regulating proportional share) scheduling 

algorithm based on stride scheduler by Kim [4] and 

mPS (modified proportional share) scheduling 

algorithm by Yoo [5] are designed for tasks in soft 

real-time system. However, these algorithms also can 

not show the graceful degradation of performance 

under the overloaded situation and are restricted in 

uniprossor system. The optimal assignment of tasks to 

multiprocessor is, in almost all practical cases, an 

NP-hard problem [6]. Consequently various modern 

heuristics based algorithms have been proposed for 

practical reason.  

Recently, several approaches GA are proposed. 

Mitra and Ramanathan proposed a GA for scheduling 

of nonpreemptive tasks with precedence and deadline 
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constraints [7]. Lin and Yang presented a hybrid GA, 

where different operators are applied at different stage 

of the lifetime, for scheduling partially ordered 

nonpreemptive tasks in a multiprocessor environment 

[8]. Monnier et al. presented a GA implementation to 

solve a real-time nonpreemptive task scheduling 

problem [9]. Oh and Wu presented a multiobjective 

GA for scheduling nonpreemptive tasks in soft 

real-time system with multiprocessors [10]. However, 

these algorithms assume that the performance of all 

processors is same.  

In this paper, we propose a new scheduling 

algorithm for nonpreemptive tasks with precedence 

relationship in soft real-time heterogeneous 

multiprocessor system. In solution algorithms, the GA 

and the SA (simulated annealing) are cooperatively 

used [11]. In this method, the convergence of GA is 

improved by introducing the probability of SA [12] as 

the criterion for acceptance of new trial solution. 

However, it is hard to find the optimum solution by 

only applying the genetic operators. The objective of 

proposed scheduling algorithm is to minimize the total 

tardiness.  

The rest of the paper is organized as follows: In 

Section 2, we explain sr-TSP (soft real-time task 

scheduling problem) in heterogeneous multiprocessors 

system and the problem is mathematically formulated. 

Section 3 introduces the GA combined with SA 

methods and describes implementations used for this 

problem. Then, the experimental results are illustrated 

and analyzed in Section 4. Finally, Section 5 provides 

discussion and suggestions for further work on this 

problem. 

2. Soft Real-time Task Scheduling Problem 
and Mathematical Model 

In this study, we consider the problem of 

scheduling the tasks with precedence and timing 

constrained task graph on a set of heterogeneous 

processors in a way that minimizes the total tardiness 

F(x, tS) under the following conditions:  

(1)All tasks are nonpreemptive; 

(2) Every processor processes only one task at a 

time; 

(3) Every task is processed on one processor at a 

time; 

(4) Only processing requirements are significant; 

memory, I/O, and other resource requirements are 

negligible. 

The sr-TSP is formulated under the following 

assumptions: Computation time and deadline of each 

task are known. A time unit is artificial time unit. Soft 

real-time tasks scheduling problem in heterogeneous 

multiprocessors system to minimize the total tardiness 

is formulated as follows:  
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In above equations, notations are defined as 

follows:  

-Indices 

i, j : task index, i, j = 1,2,…,N 

m: processor index, m = 1, 2,…, M 

-Parameters 

G = (T, E) : task graph 

T = {1, 2, …, N}: a set of N tasks 

E = {eij}, i, j=1, 2,…,N, I ≠ j : a set of directed 

edges among the tasks representing  

precedence relationship 

i : the I th task, i = 1, 2,…, N 

eij : precedence relationship between task i and task 

j 
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pm : the m th processor, m = 1, 2,…,M 

cim: computation time of task i on processor pm 

di : deadline of task i 

pre*(i): set of all predecessors of task i 

suc*(i): set of all successors of task i  

pre(i): set of immediate predecessors of task i 

suc(i): set of immediate successors of task i  

ti
E : earliest start time of task i 
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-Decision Variables 

ti
S : real start time of task i 
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Eq. (1) is the objective function in this scheduling 

problem. Eq. (1) means to minimize total tardiness of 

tasks. Constraints conditions are shown from Eq. (2) 

to Eq. (5). Eq. (2) means that task can be started after 

its earliest start time, begin its deadline. Eq. (3) 

defines the earliest start time of task based on 

precedence constraints. Eq. (4) means that every task 

is processed on one processor at a time. Fig. 1 

represents the time chart of sr-TSP. 

3. GA Approach Combined with SA  

In this paper, solution algorithm is based on GA. 

Several new techniques are proposed in the encoding 

and decoding algorithm of genetic string and the 

genetic operations are introduced for discussion. They 

are explained in the following subsections. 

3.1 Encoding and Decoding 

A chromosome Vk, k = 1,2,…, popSize, represents 

one of all the possible mappings of all the tasks into 

the processors. Where popSize is the total number of 

chromosomes in a generation. A chromosome Vk is 

partitioned into two parts u(·), v(·). u(·) means 

scheduling order and v(·) means allocation 

information. The length of each part is the total 

number of tasks. The scheduling order part should be 

a topological order with respect to the given task 

graph that satisfies precedence relationship. The 

allocation information part denotes the processor to 

which task is allocated.  

Encoding procedure for soft real-time task 

scheduling problem (sr-TSP) will be written as 

follows: 

procedure: Encoding for sr-TSP 

input: task graph data set, total number of 

processors M 

output: u(·), v(·)  

begin 

l←1, W← ; 

while (T ≠ ) 
 

j

i

j

i

cim cjM
di dj

p1

pm

pM

…
…

 
Fig. 1  The time chart of sr-TSP.  
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W ← W arg{i |pre*(i ) =  , i }; 

T ← T- {i}, i∊ W; 

while (W ≠ ) 

j ← random(W); 

u(l) ← j ; 

W ← W – {j }; 

pre*(i ) ← pre*(i ) – {j}, i;  

m← random[1:M]; 

v(l) ← m ; 

l ← l+1; 

end 

end 

output u(·), v(·); 

end 

Where, W is temporary defined working data set for 

tasks without predecessors. In encoding procedure, 

feasible solutions are generated by respecting the 

precedence relationship of task and allocated 

processor is selected randomly.  

Fig. 2 represents the example of this encoding 

procedure.  

Decoding procedure will be written as follows: 

procedure: Decoding for sr-TSP 

input: task graph data set, chromosome u(·), v(·) 

output: schedule set S, total tardiness of tasks F 

begin 

l←1, F ← 0, S ← ; 

while (l ≤ N) 

i ← u(l); 

m← v(l); 

if (exist suitable idle time) then insert(i); 

start(i); 

update_idle(); 

F ← F +max{0,(ti
S+cim-di )};  

S ← S  {(i, pm: ti
S – ti

F)};  

l ← l+1; 

end 

output S, F 

end 

Where insert (i) means to insert i at idle time if i is 

computable in idle time. At start (i), the real start time 

of ith task ti
S and the finish time of i th task ti

F can be 

calculated. updata_idle () means that the list of idle 

time is updated if new idle time duration is occurred. 

The objective value F(x, tS) and schedule set S is 

generated through this procedure.  
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Fig. 2  The example of encoding procedure. 
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Fig. 3  The example of decoding procedure. 
 

Fig. 3 represents the example of decoding 

procedure with chromosome in Fig. 2. 

3.2 Evolution Function and Selection 

The fitness function is essentially the objective 

function for the problem. It provides a means of 

evaluating the search node and it also controls the 

selection process [13, 14]. 

The fitness function used for our algorithm is based 

on the F(x, tS) of the schedule. Because we use the 

roulette wheel selection, we convert the minimization 

problem to maximization problem, that is, the used 

evaluation function is then  

kFVeval k  ),(/1)( Stx,       (9) 

Selection is the main way GA mimics evolution in 

natural systems: fitter an individual is, the highest is 

its probability to be selected. For selection, the 

commonly strategies called roulette wheel selection [9, 

15] has been used.  

3.3 GA Operators 

We use one-cut crossover. This operator creates two 

new chromosomes (proto-offspring) by mating two 

chromosomes (the parent). The one-cut crossover 

procedure will be written as follows: 

procedure: One-cut Crossover 

input: parent chromosomes u1(·), v1(·), u2(·) , v2(·) 

output: proto-offspring chromosomes u1’(·), v1’(·), 

u2’(·), v2’(·) 

begin  

r ← random[1,N]; 

u1’(·) ← u1(·); 

v1’(·) ← v1[1:r] // v2[r+1:N] ; 

u2’(·) ← u2(·); 

v2’(·) ← v2[1:r] // v1[r+1:N] ; 

output proto-offspring chromosomes u1’(·), v1’(·), 

u2’(·), v2’(·); 

end 

where u’(·), v’(·) are proto-offspring chromosome 

and (·)1//(·)2 means to append (·)2 after (·)1. Fig. 4 

represents the example of one-cut crossover 

procedure. 

For another GA operator, mutation, we use the 

classical one-bit altering mutation [16].  
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Fig. 4  The example of one-cut crossover.  

3.4 Improving of Convergence by the Probability of 

SA 

The convergence speed to local optimum of the GA 

can be improved by adopting the probability of SA 

(simulated annealing) [11, 12]. Even though the 

fitness function value of newly produced strings is 

lower than those of current strings, the newly 

produced ones are fully accepted in early stages of 

searching process. However, in later stages, a string 

with lower fitness function value is seldom accepted. 

The procedure of improved GA by the probability of 

SA will be written as follows: 

procedure: Improving of GA chromosome by the 

probability of SA 

input: parent chromosome V, proto-offspring 

chromosomes V’,  

temperature T, cooling rate of SA ρ 

output: offspring chromosomes V’’ 

begin 

r ← random[0,1]; 

E ← eval(V’)-eval(V); 

if ( E >0 || r <Exp(E/T) ) 

V’’ ← V’; 

else 

V’’ ← V; 

T ← T xρ; 

output offspring chromosomes V’’ 

end 

In this procedure, V and V’ mean parent 

chromosome and proto-offspring chromosome. V’’ 

means offspring chromosome which is produced by 

this procedure. The T means the temperature and the ρ 

means the cooling rate of SA. 

3.5 Reproduction and Population Replacement 

During reproduction and replacement steps, 

proto-offspring chromosomes are created by mating, 

with probability pC, pairs of parents selected in the 

current population. And then chromosomes are 

mutated with probability pM, randomly using one of 

the mutation operators [13]. The offspring 

chromosomes are produced by the probability of SA. 

Then new population is built through evaluating 

chromosomes and selecting. 

This iterative evolution process is stopped as soon 

as one solution is found. However, we limit the 

number of offspring produced to maxGen, in order to 

avoid prohibitive calculation time, and to ensure that 

the GA will stop when treating an infeasible problem. 

Consequently, our proposed hGA (hybrid genetic 

algorithm) obeys to the following algorithm:  

procedure: sr-TSP by hGA+SA 

input: task graph data set 

output: best schedule set S 

begin 

t ←0; 

initialize P(t) by encoding routine; 

fitness eval(P) by decoding routine; 

while (not termination condition) do 

one-cut crossover P(t) to yield C’(t); 

altering mutation P(t) to yield C’(t); 

improving GA chromosome by the probability of 

SA; 

fitness eval(P, C) by by decoding routine; 

select P(t +1) from P(t) and C(t); 

t ← t +1;  

end 

output best schedule set S; 

end 



Real-time Task Scheduling in Heterogeneous Multiprocessors System using Hybrid Genetic Algorithm 109

4. Validation 

To validate proposed hGA, several numerical tests 

are performed. We compared proposed hGA with 

Monnier’s algorithm and proposed GA which is not 

combined with SA. The Monnier’s algorithm is 

concerned to homogeneous multiprocessors system 

and the proposed hGA is designed for heterogeneous 

multiprocessors system. As there are no algorithms 

which are concerned to heterogeneous multiprocessors 

system, we compared proposed hGA with Monnier’s 

algorithm in heterogeneous multiprocessors system. 

The Monnier’s algorithm is proposed by Monnier, 

Beauvais and Deplanche [9]. This algorithm based on 

simple GA uses linear fitness normalization technique 

for evaluating chromosomes. The linear fitness 

normalization technique is effective to increase 

competition between similar chromosomes. However 

this method is limited in special problem with similar 

chromosomes. And in this algorithm, insertion method 

is not used. In other words, although there is idle time, 

task can not be executed in idle time. Numerical tests 

are performed with randomly generated task graph. 

We use P-Method [17] for generation task graph. The 

P-Method of generating a random task graph is based 

on the probabilistic construction of an adjacency 

matrix of a task graph. Element aij of the matrix is 

defined as 1 if there is a precedence relationship from 

i to j; otherwise, aij is zero. An adjacency matrix is 

constructed with all its lower triangular and diagonal 

elements set to zero. Each of the remaining upper 

triangular elements of the matrix is examined 

individually as part of a Bernoulli process with 

parameter ε, which represents the probability of a 

success. For each element, when the Bernoulli trial is 

a success, then the element is assigned a value of one; 

for a failure the element is given a value of zero. The 

parameter ε can be considered to be the sparsity of the 

task graph. With this method, a probability parameter 

of ε = 1 creates a totally sequential task graph, and ε = 

0 creates an inherently parallel one. Values of ε that 

lie in between these two extremes generally produce 

task graphs that possess intermediate structures. 

For tasks’ computation time and deadline, we use 

random number based on exponential distribution and 

normal distribution as follows:  

cim
E = random value based on exponential 

distribution with mean 5 

cim
N = random value based on normal distribution 

with mean 5 

rE = random value based on exponential distribution 

with mean ci
E 

rN = random value based on normal distribution 

with mean ci
N 

di
E = ti

E + max{ cim
E , ∀m}+ rE 

di
N = ti

E + max{ cim
N , ∀m}+ rN 

where, cim
E and cim

N are the computation time of ith 

task on mth processor based on exponential 

distribution and normal distribution respectively. di
E 

and di
N are the deadline of ith task based on 

exponential distribution and normal distribution 

respectively.  

Numerical tests are performed with three task graph: 

the number of tasks 10, 50 and 100. 

4.1 Example 1 

Fig. 5 represents the task graph which used in 

example 1.  
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Fig. 5  Task graph with 10 tasks.  
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For generality of numerical test, Tables 1 and 2 are 

data set generated by exponential distribution and 

normal distribution of task graph in Fig. 5 

respectively. 

Tables 3 and 4 show the comparisons of results by 

three different scheduling algorithms based on data in 

Table 1. Tables 5 and 6 show the comparisons of 

results by three different scheduling algorithms based 

on data in Table 2. In Tables 3 and 5, F(x, tS) of each 

algorithm is compared in different number of 

processors. The results of proposed hGA are better 

than that of other algorithms. However, total number 

of processors without tardiness is same at all 

algorithms. In Tables 4 and 6, some terms such as 

makespan, computing time and the utilization of 

processors are compared on the total number of 

processors without tardiness. The computing time of 

proposed hGA is a little bit longer than those of the 

other two algorithms. However, this computation  

time can be an acceptable time for long term scheduling.  
 

Table 1  Data set of task graph with 10 tasks (exponential distribution).  

i suc(i) 
cim 

di i suc(i) 
cim 

di ci1 ci2 ci3 ci1 ci2 ci3 

1 8 5 3 10 13 6 9 2 4 7 24 

2 6 3 7 12 17 7 - 2 15 4 13 

3 4,5 3 4 1 12 8 - 3 5 4 18 

4 6,7,8 2 16 6 12 9 10 5 5 8 27 

5 6,10 12 2 4 27 10 - 1 5 6 29 
 

Table 2  Data set of task graph with 10 tasks (normal distribution).  

i suc(i) 
cim 

di i suc(i) 
cim 

di ci1 ci2 ci3 ci4 ci1 ci2 ci3 ci4 

1 8 5 3 11 8 19 6 9 2 11 11 3 37 

2 6 6 5 4 13 9 7 - 3 10 11 8 44 

3 4,5 11 8 6 7 18 8 - 4 12 10 5 30 

4 6,7,8 10 13 5 6 37 9 10 6 9 7 10 37 

5 6,10 10 13 8 11 38 10 - 11 12 6 4 58 
 

Table 3  Comparison with 3 algorithms for F(x, tS) based on data set in Table 1 (exponential).  

Total number of processors Monnier’s GA Proposed GA Proposed hGA 

1 17 16 14 

2 9 10 6 

3 0 0 0 
 

Table 4  Comparison with 3 algorithms without tardiness based on data set in Table 1 (exponential).  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 3 3 3 

make span 29 27 26 

Computing time (msec) 22 23 32 

Average utilization of processors 0.517179 0.550725 0.568571 
 

Table 5  Comparison with 3 algorithms for F(x, tS) based on data set in Table 2 (normal).  

Total number of processors Monnier’s GA Proposed GA Proposed hGA 

1 59 60 54 

2 28 28 13 

3 7 5 3 

4 0 0 0 
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Table 6  Comparison with 3 algorithms without tardiness based on data set in Table 2 (normal).  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 4 4 4 

Makespan 36 38 33 

Computing times (msec) 32 32 47 

Average utilization of processors 0.515152 0.519683 0.525556 
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Fig. 6  Task graph with 50 tasks.  
 

The average utilization of processors and makespan of 

hGA is more desirable than those of the others.  

However, in these cases, total number of processors 

without tardiness is same at all algorithms. The 

distinction between proposed hGA and other 

algorithms is not appeared because the total number of 

tasks is very small. 

4.2 Example 2 

In this example, we use a task graph with 50 tasks. 

Fig. 6 represents the task graph of 50 tasks case.  

The data set of tasks representing time constraints is 

omitted. Figs. 7 and 8 show that the comparison with 

3 algorithms for F(x, tS) based on data in exponential 

distribution and normal distribution respectively. In 

Fig. 7 and 8, F(x, tS) of proposed hGA is smaller than 

that of each algorithms.  

In Tables 7 and 8, some terms such as makespan, 

computing time and the utilization of processors are 

compared on the total number of processors without 

tardiness. Total number of processors without 

tardiness of proposed hGA is smaller than that of 

other algorithms. The computing time of proposed 

hGA is a little bit longer than those of the other two 

algorithms. However, this computation time can be an 

acceptable time for long term scheduling. The average 

utilization of processors of hGA is more desirable 

than that of other algorithms. 

4.3 Example 3 

In this example, we use a task graph with 100 tasks. 

Task graph and the data set of tasks representing  

time constraints are omitted. Figs. 9 and 10 show  

that the comparison with 3 algorithms for F(x, tS) 

based on data in exponential distribution and   

normal distribution respectively. In Figs. 9 and 10, 

F(x, tS) of proposed hGA is smaller that that of each 

algorithms.  
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Fig. 7  Comparison with 3 algorithms for F(x, tS) based on exponential distribution.  
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Fig. 8  Comparison with 3 algorithms for F(x, tS) based on normal distribution.  
 

Table 7  Comparison with 3 algorithms without tardiness based on data in exponential distribution.  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 12 11 11 

Makespan 35 37 39 

Computing times (msec) 120 122 191 

Average utilization of processors 0.518339 0.533981 0.532281 
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Table 8  Comparison with 3 algorithms without tardiness based on data in normal distribution.  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 16 16 14 

makespan 47 50 49 

Computing times (msec) 123 123 198 

Average utilization of processors 0.500152 0.4909040 0.515035 
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Fig. 9  Comparison with 3 algorithms for F(x, tS) based on exponential distribution 
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Fig. 10  Comparison with 3 algorithms for F(x, tS) based on normal distribution 
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Table 9  Comparison with 3 algorithms without tardiness based on data in exponential distribution.  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 30 30 28 

makespan 103 101 106 

Computing times (msec) 497 499 818 

Average utilization of processors  0.433293 0.437284 0.477352 
 

Table 10  Comparison with 3 algorithms without tardiness based on data in normal distribution.  

Terms Monnier’s GA Proposed GA Proposed hGA 

# of processors M 34 35 33 

Makespan 132 130 137 

Computing times (msec) 498 500 820 

Average utilization of processors 0.523363 0.519823 0.527490 
 

In Tables 9 and 10, some terms such as makespan, 

computing time and the utilization of processors are 

compared on the total number of processors without 

tardiness. Total number of processors without 

tardiness of proposed hGA is smaller than that of 

other algorithms and the average utilization of 

processors of hGA is more desirable than those of the 

others. 

5. Conclusions 

A new task scheduling algorithm is proposed in this 

paper. This algorithm is designed for non-preemptive 

tasks in soft real-time multiprocessor system with the 

communication time between processors and the 

precedence relationship between tasks. In solution 

algorithms, we proposed a method which combines 

the moGA (multiobjective genetic algorithm) and the 

SA. In this method, the convergence of GA is 

improved by introducing the probability of SA as the 

criterion for acceptance of new trial solution. The 

objective of proposed scheduling algorithm is to 

minimize the total tardiness and total number of 

processors used simultaneously. For these conflicting 

objectives, this paper combines AWA (adaptive 

weight approach). From the numerical results, the 

results of the proposed moGA are better than that of 

other algorithms.  

This determines the next step of our study. We plan 

to design real-time tasks scheduling algorithm in 

heterogeneous multiprocessors system.  
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