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Classification methods play an important role in investigating crime in forensic research. Here we assess the 

relative performance of several classification methods, such as Logistic Regression (LR), Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Mixture Discriminant Analysis (MDA) and 

Classification Tree (CT) on glass identification data. We present a different approach to investigate the relative 

performance of the classifiers by invoking the tests of statistical significance and the receiver operating 

characteristic (ROC) curves in addition to estimating the probabilities of correct classification (PCC). The area 

under the receiver operating characteristic curve (AUC), the error rate and its 95% confidence interval are used to 

measure predictive power of these algorithms. Dimensionality reduction of data has been conducted using principal 

component analysis (PCA) and Fisher’s linear discriminant analysis (FDA) and two major components were 

identified. Among all the classification methods mentioned above, the LDA and the QDA are observed to be 

statistically significant. The Box’s M test (P<0.0001), which is used to test the homogeneity of covariance matrices, 

showed that the homogeneity of covariance could not be assumed for LDA. This suggests that for glass types, 

window and non-window, the QDA is superior to all methods. The CT, however, has been found to outperform 

FDA when all six categories of glass are considered. 
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Introduction 
Glass is available in many different forms and chemical compositions. It can be commonly found in 

windows or doors of a house, in kitchen utensils, in cars or vehicles. The property of the glass, particularly the 
refractive index, depends on composition and treatments of the glass. The typical glass contains oxides of Si, 
Mg, Ba, Na and other oxides [Terry et al., 1983]. In forensic investigation, glass fragments are investigated in 
order to determine whether the glass fragments obtained from an individual belong to window or non-window 
glass [Bottrell, 2009]. Several procedures, based on compositions and refractive index (RI), are available to 
identify the glass types. In many cases it is difficult to get a well-defined boundary separating the window from 
non-window glass just looking at the composition and RI, as the composition and RI of window and 
non-window based glass overlap to a certain extent [Terry et al., 1983]. The motivation of this study is to use 
and analyze different machine learning techniques in order to facilitate crime investigations. 

A wide range of classification or machine learning techniques applied to glass identification dataset have 
included linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant 
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analysis (RDA), and k-nearest neighbor (kNN) method [Aeberhard et al., 1994]. In order to investigate the 
relative performance of the classification methods, they estimated the probabilities of correct classification 
(PCC) of classifiers and evaluated each of classifiers by the leave-one-out method with the real data. However, 
the leave-one-out method is very computationally expensive and it yields a non-stratified sample as it has only 
one instance in the test set. They reported that the PCC for LDA, QDA, RDA and 1NN is 71.2%, 62.6%, 74.2% 
and 81.0%, respectively, suggesting that kNN could be the efficient method to classify the glass data. Although 
kNN is the most popular and powerful classification technique, it is not a robust technique for noise as well as 
outliers in the training data set, and for it to be effective the training data set needs to be relatively large. Neural 
network ensemble has been proposed to edit the training data sets in order to improve the performance of kNN 
classifier [Jiang and Zhou, 2004, Ferri et al., 1999]. Besides, it is not very clear which model is the most 
effective model for providing an optimally separating hyperplane. Also the statistical procedures to measure the 
predictive power of these algorithms are not taken into account. 

Here we present a different approach to assess the relative performance of the classifiers by invoking the 
tests of statistical significance and the receiver operating characteristic (ROC) curves in addition to estimating 
PCC. The objective of this research, therefore, is to analyze decision boundaries for various classifiers on a 
glass identification dataset and predict a suitable classification method. In order to decrease the computational 
cost and increase the memory usage of high dimensional data for many classification algorithms, 
dimensionality reduction techniques can be used [Janecek et al., 2008]. These techniques also improve the 
clarity in data visualization. Here we perform two dimensionality reduction techniques, principal component 
analysis (PCA) and Fisher discriminant analysis (FDA) on the glass dataset. We then employ five different 
algorithms or methods, such as logistic regression (LR), LDA, QDA, mixture discriminant analysis (MDA) and 
classification tree (CT) to investigate the location of decision boundaries on the glass identification dataset with 
reduced dimensions. We show that for glass types, window and non-window, the QDA is superior to all 
methods. However, the CT is found to outperform FDA when all six categories of glasses are considered. 

We organize the remainder of this paper as follows. At first, we present the descriptive statistics to describe 
the distribution of data using parallel coordinates. The dimensionality reduction of data is presented in section 
Dimension Reduction using PCA and FDA. Several classification methods applied to the reduced dimensional 
data are discussed in section Classification Methods. Results of the different classification methods and the 
related discussion are presented in section Results and Discussion. The relative performance of classification 
methods is shown in section Classifier Performance for Two Classes. We then present results for multiple 
categories in section Multiple Categories using classification trees and Fisher’s LDA before the concluding 
remarks in section Conclusions. 

Descriptive Statistics and Exploratory Data Analysis 
Glass Identification Data is obtained from [Lichman, 2013]. This dataset has 214 instances and 11 

variables. Out of 214 total instances, 163 are window glasses and 51 are non-window glasses with no missing 
values. The quantitative variables are RI and elemental compositions, consisting of oxides of Na, Mg, Al, Si, K, 
Ca, Ba and Fe. The type of glass is class attribute, such as building windows float processed, building windows 
non-float processed, vehicle windows float processed, containers, tableware and headlamps. Among the window 
glasses, 87 are float processed and 76 are non-float processed. The float processed group consists of 70 building 
windows and 17 vehicle windows. The non-float processed group contains 76 building windows and 0 vehicle 
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windows. There are 13 containers, 9 tableware and 29 headlamps among 51 non-window glass. 
Fig. 1 is a parallel coordinate plot, which is an efficient way to represent multidimensional data, 

illustrating some interesting data structures, such as the one-dimensional features (marginal densities) and 
two-dimensional features (correlation and nonlinear structures) [Wegman, 1990]. It is observed from the 
parallel plot that the Si, Al, Fe, Na, and RI are approximately normally distributed. However, the distribution of 
the Ba appears to be right skewed. Clusters are detected on the Mg. The other interesting feature is the crossing 
between Na and RI, Na and Mg, Al and Mg, suggesting a negative correlation. The high level of Al would tend 
to have low level of Mg, and the high level of Mg would tend to have low level of Na. We can see an 
approximate parallelism and relatively fewer crossings between K and Si and Si and Al, suggesting a positive 
correlation. Also one can observe the negative slope connecting the low Ca to moderate to high K which 
suggests the presence of an outlier. The left side of the relationship between Fe and Ba shows an approximate 
hyperbolic boundary, and the right side displays the crossover effect illustrating that for low Fe or low Ba, there 
seems to be a very little correlation. 

 

 
Figure 1. Parallel coordinate plot describing the marginal densities and correlations of variables. 

Effect of composition and RI on glass type 
In order to investigate the effect of composition and RI on the types of glass, the scatter plots are color 

coded [Wegman and Dorfman, 2003]. Here we present three scatter plots, Al-Mg, Al-RI and Ca-RI. The 
building windows float processed glass is brushed with red, building windows non-float processed with green, 
vehicle window float processed with blue, containers with yellow, tableware with magenta and headlamps with 
cyan. In figure (see right panel of Fig.2 (a)), the glass with a high level of Mg and a low level of Al are likely to 
be classified as building windows float processed, and a high level of Mg and a medium level of Al as building 
windows non-float processed. Glass with a medium RI and a low Al are likely to be classified as building 
windows float processed and a high level of Al and a low level of RI, however as headlamps (see right panel of 
Fig. 2 (b)). Glass with a high level of RI and Ca appears to belong to windows non-float processed and a low 
level of RI and Ca to headlamps (see right panel of Fig. 2(c)). 
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Figure 2. (a) The right panel showing the color coded scatter plot of Al and Mg. (b) The right panel showing the color 
coded scatter plot of Al and RI. (c) The right panel showing the color coded scatter plot of Ca and RI. 
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Dimension Reduction using PCA and FDA 
PCA 

It is a well-known dimensionality reduction method. Here the data are Xi ∈ R9, i = 1,…, 210. This method 
uses eigenvalue decomposition of a 9×9 covariance matrix of the data, X. The first principal component is the 
linear combination of variables that explains the maximum variance in the data set. 

The first and second principal components can be written as [Hastie et al., 2011, James et al., 2013]: 
Y1 = b11 x1 + b12 x2 + b13 x3 + b14 x4 + b15x5 + b16x6 +b17x7 + b18x8 + b19x9        (1) 
Y2 = b21 x1 + b22 x2 + b23 x3 + b24 x4 + b25x5 + b26x6 +b27x7 + b28x8 + b29x9        (2) 

Where Y1 is the first principal component, Y2 is the second principal component, xi are the original 
variables, bij the weight or loadings associated with variables. In matrix notation, the above equations for glass 
dataset can be written as, Y = b X, where Y is a matrix (9×210) of principal components , X is a matrix (9×210) 
of original variables and its variance-covariance matrix is Σ, b is a matrix (9×9) of loadings, var(Y) = bΣbT and 
Σ = bTDb; where D is a diagonal matrix and diagonal entries are eigen values, D = diag (d1,d2,...,d9). The data, 
X, is standardized, and it is assumed that b is an orthonormal matrix [Shlens, 2005]. 

All variables except Fe that are correlated sufficiently (r>0.3) have been included in PCA. The variance vs. 
component plot, Fig. 3 (a), shows a reasonable drop after three components. However, we identify only two 
components based on the values of the loadings. It was observed that Al, Ba, and Na contribute only to the 
principal component 1 (PC1) (see Fig. 3(b) and table 1) and Ca, RI, Mg and k contribute to the principal 
component 2 (PC2). With these variables in mind we have named the principal component one as composition, 
and the principal component two as composition dependent refractive index. The first component accounts for 
29.63%, the second component 26.16% and third component 15.15% and fourth component 11.31% of the total 
variance. The first four components account for 82.25% of total variance and the first two components account 
for around 56% of total variance in original variables. 

 

 
Figure 3. (a) Barplot of variances explained by the principal components with observations for Fe removed. (b) Biplot 
(scaled) of the first two principal components with observations for Fe removed. 
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Table 1 
Component loadings for rotated components 

 
Component 
1 2 3 

Ba 0.838 - 0.029 0.013 
Na 0.783 0.006 - 0.468 
Al 0.725 - 0.196 0.356 
Ca - 0.238 0.951 0.058 
RI - 0.289 0.790 - 0.416 
Mg - 0.617 - 0.619 - 0.436 
K - 0.272 - 0.604 0.251 
Si 0.022 - 0.171 0.872 
Extraction Method: Principal Component Analysis 
Rotation Method: Varimax with Kaiser Normalization. 
Rotation converged in 5 iterations 

FDA 
In this method, the aim is to obtain the uncorrelated linear combination of original variables, termed as 

discriminant functions. This procedure maximizes the between-to-within class variance. In doing so, maximum 
discrimination among classes is obtained. The first two discriminant functions are: 

Y1 = c11 X1+ c12X2 + c13 X3 + . . . + c1p Xp                        (3) 
Y2 = c21 X1+ c22X2 + c23 X3 + . . . + c2p Xp                        (4) 

Where Y1 is the first discriminant function, Y2 is the second discriminant function, Xi, i = 1, 2, 3,…, p are 
the input variables and c1i, i = 1, 2, . . ., p are the weights associated with input variables for the discriminant 
functions. In matrix notation, the equations can be written as Y = cTX. The covariance matrix of X, Σ is defined 
as Σ = B + W where B is the between-class variance of X and W is the within-class variance of X. The 
between-class variance of Y is cTBc, and the within-class variance of Y is cTWc. Fisher-LDA maximizes the 
objective: 

 
Here c is obtained by the eigenvector of W-1B corresponding to the largest eigenvalue [Hastie et al., 2011]. 

At most min (p, K–1) positive eigen values exist where p is the number of input variables and K is the number 
of classes. We observe that the first linear discriminant explains about 87% of the between-class variance and 
the second linear discriminant explains 8.05% of the between-class variance. Therefore, the first two 
discriminants explain 94.93% between-class variance in the glass identification data, suggesting that the two 
discriminant functions are sufficient to adequately fit the data. 

Visualizing the difference between PCA and FDA 
Both PCA and Fisher’s LDA can be used for dimensionality reduction. Fisher’s LDA is a supervised 

technique and uses class information. On the other hand, PCA is an unsupervised learning technique. These two 
approaches are very different. In fact, PCA preserves most of the variability in the data while Fisher’s LDA 
captures most of the between-class variance in the data. The upper and lower panels of Fig. 4 show LDA and 
PCA, respectively. We can see that container is distinctly separated from tableware in FDA, however some 

F(c)  = 
cT B c
cT W c
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overlap exists in PCA. Here we consider PCA over FDA as PCA models total variability of data as opposed to 
the difference between class, and PCA is also superior to FDA under conditions of colinearity. 

 

 
Figure 4. The top panel showing the 2D projection of glass identification data for Fisher’s LDA.The bottom panel 
showing the 2D projection of glass identification data for PCA. 

Classification Methods 
We investigate the binary classification problem (window vs. non- window) by randomly splitting glass 

identification dataset into training set (70%) and test set (30%). We then build a classifier on training dataset 
and evaluate each of classifiers using an independent test set. Besides we compare the performance of several 
models that are built on training glass dataset with reduced dimensions. The models are LR, LDA, QDA, MDA 
and CT. As PCA and a number of classification methods, for example, LDA, QDA, MDA are sensitive to 
outliers, we estimate Mahalanobis distance. Cases (#173, #172, #107, #185, #150) with Mahalanobis distance 
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greater than χ2(9) = 27.88 are identified as outliers and are eliminated prior to analysis. 

Logistic Regression Model 
We define the training dataset as χ = {(xi, yi) : i = 1, …, n)}, where xi ∈ Rp are input variables and yi ∈{1: 

window, 0: non-window} denote the class of the ith observation. The logistic regression model has the 
following form [Hastie et al., 2011]: 

                            (5) 

where α ∈ ℜ and β ∈ ℜp are unknown parameters. The classification boundary is given by {x: α + βTx = 0}. 
The log likelihood is [Hastie et al., 2011]: 

 

 
The parameters α and β are estimated by maximum likelihood. 

Linear Discriminant Analysis 
The LDA model assumes that the input variables given each class are normally distributed and the classes 

have equal covariance as X|Y ∼ N(µj,Σj), and Σj = Σ, j = 1 (window), j = 0 (non-window) and X = [x1, x2, …, 
xn]T. The conditional density of X given class Y = j can be written as [James et al., 2013]: 

                   (6) 

Based on Bayes’ rule, the posterior probability of membership in the predicted class is estimated by 
reversing the conditional probabilities as: 

 

where P(X=x) is the marginal density of X. In comparing two classes, we plug the normal density into the log 
posterior odds [Hastie et al., 2011] and we have, 

 

 
π1 and π0 are prior probabilities of being in window class and in non-window class, respectively. Decision 
boundary is γ0+γTx = 0. If γ0+γTx > 0, LDA rule classifies input set to window and to non-window otherwise. 
Parameters are estimated by the maximum-likelihood estimation (MLE). The likelihood function is as follows 
[Hastie et al., 2011]: 

log
P(Y=1|X=x)

P(Y=0|X=x)
= α+ βTx

n
l(α,β)  = Σ log

i=1
[P (Y=1| X = xi )]yi [ 1 – P(Y=1|X = xi )]1- yi

n

l(α,β)  = Σ log
i=1

yi (α + βT xi ) - log ( 1+ exp(α + βT xi ))

P( X = x |Y = j )  = 
1

(2π)p/2
1

| Σ |1/2 exp - 1
2 (x - µj)TΣ-1(x-µj)  

P(Y = j | X = x) =
P(X= x|Y=j) P(Y=j)  

P(X=x)
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The parameters π1, π0, µ1, µ0 and Σ are estimated as follows [Pohar et al., 2004]: 

 

 
where n1 and n0 are the number of observations in the window class and non-window class, respectively. 

Quadratic Discriminant Analysis 
The QDA model assumes that the input variables are normally distributed within each class and each class 

has different covariance matrix as X|Cj ∼ N(µj,Σj), j = 1 (window), j = 0 (non-window). The class-conditional 
density of X in class Y = j is [Hastie et al., 2011]: 

 
where Σj is the covariance matrix for class j. 

Substituting the normal density into the log posterior odds of window glass versus non-window glass we 
have [Hastie et al., 2011], 

 
Note that the log odds of window versus non-window is quadratic function of x which is set to 0 in order 

to obtain the decision boundary. 

Mixture Discriminant Analysis 
A single Gaussian to model a class, as in LDA and QDA, may not be sufficient to represent the data. With 

this in mind, it is extended to a mixture of Gaussians. For class k, the within-class density [Hastie et al., 2011] 
is 

               
and where the rth mixture density has prior probability of πkr and Σ is equal across all classes and subclasses. 
The joint density is: 

 
where dk is the prior probability of class k. The MLE of dk is the proportion of training samples in class k. πkr , 
µkr , and Σ are estimated using the EM algorithm. 

 
 

L(µ1, µ0, Σ, π1, π0) = Π p(xi,yi)
i=1

n
= Π

i=1

n 1
(2π)p/2

1
| Σ |1/2 exp - 1

2
(x i - µ1)TΣ-1(xi -µ1) π1[ ]yi 1

(2π)p/2
1

| Σ |1/2
exp - 1

2
(x i - µ0)TΣ-1(xi -µ0)[ π0]1- yi

π1 =
n1

n
,^ π0 =

n0

n
,^ µ1 =

n1
,^ 1 Σxiyi = 1

µ0 =
n0

,^ 1 Σxiyi = 0

Σ =^ ,Σ (xi - µ1 ) (xi - µ1 )T + Σ (xi - µ0) (xi - µ0 )T
yi = 1

[ yi = 0
]/n^ ^ ^ ^

log
P(Y=1|X=x)

P(Y=0|X=x)
= log π1( π0 ) - +

1
2

log |Σ1| 1
2

log |Σ0| µ1
T Σ1

-1µ1

2
- 1 µ0

T Σ0
-1µ0

2
+

1 1+  (µ1
T Σ1

-1 - µ0
T Σ0

-1)X  - XT(Σ1
-1 - Σ0

-1) X     ( 9 )
2

P(X=x, Y=k) = dk Σ πkr Φ(X|µkr,  Σ)
r=1

Rk
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Classification Trees 
It is a nonparametric method which uses recursive binary partitioning to create a binary tree. The CART 

algorithm is as follows [Breiman et al., 1984]. 
1) Initialize the tree containing the training data 
2) Obtain a set of binary splits based on one variable 
3) Select the best split at a node by estimating impurity functions, the Gini index or entropy 
4) Obtain the right-sized tree using Independent test set, or 10-fold cross-validation, or 1-SE rule 
5) Assign every terminal node to a class 
Given node t, the Gini index is defined as [Breiman et al., 1984] 

 
where p(j|t) is the probability that cases belongs to the jth class given that node is t. 

Results and Discussion 
Logistic Regression Model 

We now fit a logistic regression model using the training data set with two input variables, X1 and X2 
obtained from the principal components analysis. Table 2 shows the coefficient estimates for a logistic 
regression model. There are statistically significant effects of composition and composition dependent 
refractive index on the log odds of window glass. A 1- unit increase in composition is associated with a 
decrease in the log odds of window glass by 2.9726 units (P = 4.47e-07) holding other variable fixed. Similarly, 
a 1- unit increase in composition dependent refractive index will lead to a decrease of 0.9729 in the log odds of 
window glass (P = 0.000213) holding composition at a fixed value. So the posterior probabilities are: 

P (Y = 1|X = x) = exp (1.7267 − 2.9726 X1 − 0.9729 X2 
1+exp (1.7267 − 2.9726 X1 − 0.9729 X2 )

 

P(Y = 2|X = x) = 1
1+exp (1.7267 − 2.9726 X1 − 0.9729 X2 )

 

The decision boundary is given as 1.7267 – 2.9726 X1 – 0.9729X2 = 0 
Classification rule: 

1 2

1 2

1    If   1.7267 2.9726X 0.9729X 0
Y

0    If   1.7267 2.9726X 0.9729X 0  
− − >

=  − − ≤
 

Table 2 
The estimated coefficients for the LR model 
 Estimate  Std. Error  z value  Pr(>|z|) 
(Intercept)  1.7267  0.3418  5.051  4.39e-07 *** 
X1  -2.9726  0.5889 -5.048  4.47e-07 *** 
X2  -0.9729  0.2627  -3.703  0.000213 *** 

 

The decision boundary represented by a solid line obtained by logistic model fitted to the training data is 
shown in Fig. 5(a). It appears that the window and non window glasses are not distinctly separated. In this 
model, the training error rate is 7.89 and the estimated PCC is 92.11%. The sensitivity, percentage of window 
glass that are correctly classified, is 97.5% and the specificity, percentage of non-window glass that are 

i(t) = Σi≠j p (i|t) p (j|t) = 1 - Σjp
2
 (j|t) 
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correctly classified, is 71.88%. Training error rate, sensitivity, and specificity, PCC are estimated from the 
confusion matrix for training dataset. The confusion matrices for training and test dataset are given in Table 3 
and Table 4, respectively. 

 

 
Figure 5. The decision boundaries for the training data obtained by the following classification methods: (a) Logistic 
Regression. (b) Linear Discriminant Analysis. (c) Quadratic Discriminant Analysis. (d) Mixture Discriminant Analysis. 
The window and non-window glass are displayed as green and red, respectively. 

 

Table 3 
The confusion matrix for training dataset 
 Window glass  Non-window glass 
Window glass 117  9 
Non-window glass 3  23 
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Table 4 
The confusion matrix for test dataset 
 Window glass Non-window glass 
Window glass 40  2 
Non-window glass 1  14 

Linear Discriminant Analysis 
We fit LDA to the training data with two input variables, X1 and X2. The estimated prior probabilities are 

π1 = 0.7895, π0 = 0.2105. The class-specific means and covariances are estimated as: 

 

 
The estimated common covariance is: 

 
and the estimated parameters of the model are: 

 
The decision boundary can be written as 2.4841 – 2.3707X1 -1.2648X2 = 0. The LDA classifier predicts 

window glass if 2.4746 – 2.3707X1 -1.2648X2 > 0 and non-window glass otherwise. The decision boundary is 
shown in the scatter plot (Fig. 5 (b)), suggesting that there is some overlap between the window and 
non-window glasses. In this case, the training error rate is 8.55% with PCC of 91.45%, sensitivity of 99.17% 
and specificity of 62.5%. 

Quadratic Discriminant Analysis 
We fit the QDA model to the training data. Decision boundary which is a quadratic function of input 

variables is 4.024X1
2 + 0.7317X1X2 + 0.1483X2

2 + 4.7604X1 +1.4008X2 – 2.7832 = 0. The QDA classifier 
predicts the window glass if 4.024X1

2 + 0.7317X1X2 + 0.1483X2
2 + 4.7604X1 +1.4008X2 – 2.7832 > 0 and 

non-window glass otherwise. The classification boundary (see Fig. 5 (c)) is shown as a solid line fitted to the 
training data. It is observed that the decision boundary is quadratic. Fig. 5 (c) shows window and non window 
glasses are better separated as compared to those in LR and LDA. The training error rate is 10.53% with PCC 
of 89.47%, sensitivity of 93.33% and specificity of 75% (see Table 5). 

Mixture Discriminant Analysis 
The classification boundary using MDA model to the training data is shown as a solid line in Fig. 5(d). 

Here the decision boundary is non linear. It shows also a more distinct separation between window and non 
window glasses. The training error rate is 7.24% with PCC of 92.76%, sensitivity of 96.67% and specificity of 

μ1 =^
- 0.4076

- 0.0999
For window glass: and Σ1 =^

0.1280   - 0.1157  

- 0.1157     0.9338

μ0 =
^ 1.2042

0.4447
For  non-window glass: and Σ0 =

^ 1.6380   - 0.6456 

- 0.6456     1.3542

Σ =^ 0.8830    - 0.3807 

- 0.3807      1.1440

γ =^
- 2.3707

- 1.2648
γ 0 =  2.4841^ and
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78.13% (see Table 5). 

Classification Trees 
We fit CART model to the training data with a two-class (window glass and non-window glass) outcome 

variable and two input variables, X1 and X2. The tree diagram is shown in Fig. 6 (a). The tree has 9 terminal 
nodes. In order to verify that this is the sub tree based on the lowest cross-validation error rate, we plot the error 
rate as a function of size. Fig. 6(b) shows that the tree with 9 terminal nodes has the lowest cross-validation 
error rate. An equivalent representation of this tree is shown in Fig. 7. In this procedure the input set is 
recursively partitioned into rectangles [Hastie et al., 2011, James et al., 2013]. In this case, the decision 
boundary is non-linear, and the training error rate is 5.92% with PCC of 94.08%, sensitivity of 95.83% and 
specificity of 87.5% (see Table 5). CT has the highest PCC compared to other classifiers. 

 

 

 
Figure 6. (a) The tree diagram showing nine terminal nodes. (b) The Cross-validation as a function of the number of 
terminal nodes. (c) Cross-validation as a function of k (fold). 
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Figure 7. Decision tree showing the non-linear decision boundary. Here the tree procedure recursively partitions the 
input set into rectangles. 

 

Table 5 
PCC, Sensitivity and specificity on training dataset 
Training 
Technique PCC  Sensitivity  Specificity 
LR  92.11%  97.50%  71.88% 
LDA  91.45%  99.17%  62.50% 
QDA  89.47%  93.33%  75.00% 
MDA 92.76%  96.67%  78.13% 
CT  94.08%  95.83%  87.50% 

Classifier Performance For Two Classes 
We estimate the receiver operating characteristic (ROC) curve on the test dataset to measure model 

performance. In addition, we consider confidence interval approach and hypothesis testing paradigm. ROC 
curves (see Fig. 8) are plots of the true positive rate against the false positive rate [Fawcett, 2006]. The true 
positive (TP) and false positive (FP) rates of a classifier are defined as follows. 

TP ≈ Proportion of window glass which are correctly classified 
FP ≈ Proportion of non-window glass which are incorrectly classified 

 



Comparison of Different Classification Methods on Glass Identification for Forensic Research 79 

Here we calculate the area under the ROC curve (AUC) for classifiers LR, LDA, QDA, MDA, and CT. 
The AUC is a portion of the area of the unit square. Fig. 8 shows the areas under five ROC curves, LR, LDA, 
QDA, MDA, and CT. Classifier QDA has greater area compared to other classifiers suggesting that classifier 
QDA appears to be superior to all. 

 

 
Figure 8. Roc curves for the LR, LDA, QDA, MDA and CT classifiers on the test data. 

 

Note that the training and test samples have 152 and 57 observations, respectively. Both samples are 
sufficiently large (n>30) and the error rate corresponds to the sample mean. By the central limit theorem, the 
sampling distribution of the training and test error rates are approximately normal. The estimated classification 
error rate for training and test data, and their 95% confidence interval are summarized in table 6. 

 

Table 6 
Confidence intervals of error rates for glass identification data 

Technique  
Estimated  Error Rates 
Training  Test 

LR  0.079 [95% CI: (0.036, 0.1219)]  0.0526[ 95% CI : (-0.0054, 0.1106] 
LDA  0.0855[95% CI: (0.041, 0.13)]  0.0877[95% CI : ( 0.0143, 0.1611)] 
QDA  0.1053[95% CI : ( 0.0565, 0.1541)]  0.0702[95% CI: (0.00387, 0.1365)] 
MDA  0.0724[95% CI : (0.0312, 0.1136)]  0.035[95% CI: (-0.0127, 0.0827)] 
CT  0.0592[95% CI : (0.0217, 0.0967)]  0.0175[95% CI: (-0.0165, 0.0515)] 

 

The 95% confidence limit for the test set error rate for the method LDA is (0.0143, 0.1611) yielding a 
lower-bound error of 1.43% and an upper-bound error of 16.11 %. Similarly, the 95% confidence limit for the 
test set error rate for the method QDA is (0.00387, 0.1365) resulting in a lower-bound error of 0.387% and an 
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upper-bound error of 13.65%. Although the CT has the lowest estimated within test data classification error rate, 
analyses reveal that among all the machine learning models, LDA and QDA have only statistically significant 
test set error rates. 

We also evaluate the difference between the test error rates of the two classification models, LDA and 
QDA using the following statistic [Roiger & Geatz, 2002]: 

 
where e1 is the error rate for the model LDA, e2 is the error rate for the model QDA and e = ( e1 + e2)/2 and n is 
the size of the test set. The estimated statistic is 0.3465, suggesting that the test set error rates between LDA 
and QDA built with the same training data (p-value = 0.3645) do not have statistically significant differences. 
We now check the normality assumption and the homogeneity of covariance. A bivariate scatterplot (Fig. 9) 
with two input variables, X1 and X2, is generated to evaluate the normality assumptions. The plot appears to be 
approximately elliptical indicating that data are from the multivariate normal. The Box’s M test (Table 7), 
however, indicates a significant difference in the covariance matrices among classes (p-value < 0.0001), 
suggesting that the homogeneity of covariance cannot be assumed for LDA. Therefore, the analyses reveal that 
QDA is superior to all other models, which is consistent with the results obtained from the ROC curves. 

 

 
Figure 9. Scatter plot of X2 vs. X1 indicating data might be from multivariate normal. 

 

Table 7 
Tests on Null Hypothesis 
Box’s M 874.006 
F Approx. 18.007 
df1 45 
df2 2.592E4 
Sig. 0.000 
Tests null hypothesis of equal population covariance matrices 
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Multiple Categories 
Classification Trees 

For multiple categories, two classification methods, CT and FDA, have been used to fit the data. In CT 
method, nodes are classified as bwfp, bwnfp, vwfp, vwnfp, cont, tabw, and headl. “bwfp” means building 
windows float processed. Building windows nonfloat processed and vehicle windows float processed have been 
abbreviated as “bwnfp” and “vwfp”, respectively. Also, “vwnfp”, “cont”, “tabw” and “headl” have been used to 
describe vehicle windows nonfloat processed, containers, tableware and headlamps, respectively. We fit the 
training data with Gini index as shown in Fig. 10(a). We then examine the cost-complexity penalty (CP) table 
(see Table 8) for evaluating the overall model fit. The cost-complexity penalty measure is defined as Rα(T) = 
R(T) + α|T| where R(T) is the resubstitution estimate of the misclassification rate of a tree, T, |T| is the number 
of terminal nodes of the tree and α ( ≥0) is the complexity parameter. For a given α, Rα(T) is minimized in 
order to find a subtree T(α) [Breiman et al., 1984]. Resubstitution error is the error rate obtained from training 
data. The cross-validation error is plotted as a function of cp parameter (Fig. 10(b)). The cross-validation error 
(Xerror) in the CP table is estimated using 10-fold cross-validation. To pick the right sized tree, the 1-SE rule is 
used. In Table 8, the observed minimum cross-validated error is 0.53608 with its estimated standard error, 
0.060299. The maximum error is 0.596379. The CP (complexity parameter) value for the tree with maximum 
error is 0.041237. This occurs at tree size with terminal nodes 4 and splits 3. Based on one standard error rule 
of cross-validation, the optimal tree has 4 terminal nodes (3 splits). Fig. 10(b) also reveals that a tree with four 
nodes is the best model. We prune the tree using the optimal value of CP. The pruned tree is shown in Fig. 
10(c). Terminal nodes in the pruned tree for Gini index are labeled bwfp, bwnfp, and headl. The estimated error 
rates for the models with Gini index is given in Table 9. The within training error rate is 27.63% and its 95% CI: 
(0.2052, 0.3474). 

Fisher’s LDA 
This technique is used for visualizing high-dimensional data with multiple classes. In Fisher’s LDA, no 

assumptions are made about distribution of data. Rao (1948) modified FDA (1936) by introducing assumptions 
of normality and common covariance matrix [Cook and Swayne, 2007]. FDA results in optimal separation 
between two classes under this assumption. Here data are projected onto a low-dimensional subspace to 
maximize the ratio of between-class to within-class variance. Based on Bayes’ theorem, the posterior 
probability of membership in the predicted class given the discriminant function score can be estimated by 
reversing the conditional probabilities [Hastie et al., 2011]. Fig. 11 shows the plots of six class centroids in the 
two-dimensional subspace spanned by the first two discriminant functions for the forensic glass training data. 
Here the decision boundaries are higher dimensional affine planes as opposed to line. Also, note that black dots 
are the centroids of classes. Three classes (red, light cyan and brown) are close together and far from other 
three classes on the first discriminant function (X axis). Five classes are far from violet class on the second 
discriminant function (Y axis). Table 10 summarizes the within training error rates and the within test error 
rates estimates. 

Classifier Performance for Multiple Classes 
From the Table 10, it is observed that CT has the lowest within test error rate. We also find that there 

appears an insufficient evidence to indicate a significant difference in test set error rates of CT and FDA built 
with the same training data (p-value=0.1508). Both models appear to perform well. The Box’s M test indicates 
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that there is a significant difference in the covariance matrices among classes (p-value < 0.0001) and therefore, 
the homogeneity of covariance cannot be assumed for FDA. In conclusion, the classification tree algorithm is 
superior to the Fisher’s LDA. 

 

 

 
Figure 10. a) The unpruned tree obtained using GINI index. b) Cross-validation error as a function of terminal nodes. 
c) The pruned tree corresponding to the 1-SE rule. 
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Table 8 
CP table with Gini Index 
 CP nsplit Rel error  xerror xstd 
1 0.206186 0 1 1.15464 0.055969 
2 0.082474 2 0.58763 0.59794 0.061743 
3 0.041237 3 0.50515 0.53608 0.060299 
4 0.020619 4 0.46392 0.54639 0.060571 
5 0.010309 5 0.4433 0.5567 0.06083 
6 0.01 6 0.43299 0.54639 0.060571 

 

Table 9 
Estimated error rates using Gini index 

Technique  
Estimated Error Rates 
Training  Test 

Gini Index 0.2456[95% CI: (0.1339, 0.3574)] 0.2763 [95% CI: (0.2052, 0.3474)] 
 

 
Figure 11. Fisher’s LDA decision boundaries for training data in the two-dimensional subspace spanned by the first 
two FDA coordinates. 

 

Table 10 
The error rate estimate 

Technique  
Estimated Error Rates 
Training  Test 

Classification tree 0.2763 [(0.2052, 0.3474)] 0.2456 [(0.1339, 0.3574)] 
Fisher’s LDA 0.3684 [(0.3622, 0.3746)] 0.3333 [(0.3171, 0.3495)] 
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Conclusions 
The relative performance of classification methods, such as LR, LDA, QDA, MDA and CT is assessed by 

invoking the tests of statistical significance and the receiver operating characteristic (ROC) curves. Glass 
identification data set is used and split into two subsets: training (70%) and test (30%). The classifiers are built 
on the training dataset, and the relative performance of the classifiers is obtained on the test data. The 
performance measures for different classification methods are the area under the receiver operating 
characteristic curve (AUC), the error rates and its 95% confidence interval. Among all the classifiers, the LDA 
and QDA perform significantly very well on the reduced dimension. However, the Box’s M test (P<0.0001) 
indicates that homogeneity of covariance cannot be assumed. Despite the fact that CT has the highest estimated 
probability of correct classification (PCC), our analyses suggest that for glass types, window and non-window, 
the QDA outperforms all methods. For multiple classes, the classification tree, however, is found to perform the 
best when all six categories of glasses are considered. 
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