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Abstract: High precision position control and high speed control of the robot manipulators are fundamental and important control 
problems. The effectiveness of finite-time P-PI control was confirmed by end-effector position control of robot manipulators. 
However, parameter tuning method has not been proposed to finite-time P-PI control. In this paper, we propose a settling time design 
method and a parameter tuning method for the finite-time P-PI control. The effectiveness of the proposed parameter tuning method is 
confirmed by experiments of end-effector position control of a robot manipulator. 
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1. Introduction  

High precision position control and high speed 
control of robot manipulators are fundamental and 
important control problems. P-PI cascade control is 
commonly used for robot manipulator control [1]. 

In recent years, nonlinear finite-time control [2] that 
guarantees convergence to a desired state within 
finite-time attracts much attention in nonlinear control 
theory [3-9]. In particular, superior control 
performance of finite-time P-PI control was confirmed 
by end-effector position control of robot manipulators 
[10]. However, a parameter tuning method has not 
been developed to the finite-time P-PI control. 

In this paper, we propose a settling time design 
method for the finite-time P-PI control based on Refs. 
[9] and [11]. Then, we confirm the effectiveness of the 
proposed method for settling time design by computer 
simulation. 

Moreover we extend our proposed method to 
parameter tuning. The effectiveness of the proposed 
parameter tuning method is confirmed by experiments 
of end-effector position control of a robot 
manipulator. 
                                                           

Corresponding author: Keigo Hiruma, research fields: 
nonlinear control and robotics. 

2. Preliminaries 

In this section, we summarize definitions and 
fundamental properties of nonlinear finite-time control. 
Throughout the paper, Թவ ൌ ሾ0, ∞ሻ, ห|ݔ|ห ൌ
ሺΣୀଵ

 ଶሻଵ/ଶ|ݔ|  for all ݔ  א Թ, B δ ൌ ሼݔ|ԡݔԡ ൏ ߜ } and 
തఋܤ ൌ ሼݔ|ԡݔԡ   .ሽߜ

2.1 Stability and Convergence Rate [10] 

In this subsection, we show definitions of stability 
and convergence rates. We consider the following 
differential equation: 

( ),x f x=                (1) 
Where ݔ א Թ, ݂: Թ ՜ Թ  is continuous, and 

݂ሺ0ሻ ൌ 0.  Stability of the origin of Eq. (1) and 
convergence rate are defined as follows: 

Definition 1. (Stability) The origin of Eq. (1) is said 
to be： 

 stable for each ε  0 there exists δ  0 such 
that 

ԡݔ ԡ ൏ ߜ ֜ ԡݔሺݐሻ ԡ ൏ ;ߝ ݐ  0.     (2) 
 globally asymptotically stable if the origin is 

stable and all solution ݔሺݐሻ  satisfy the following 
equation: 

lim || ( ) || 0.
t

x t
→∞

=             (3) 
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Definition 2. (Convergence rate) The origin of Eq. 
(1) is said to be：  

 rationally stable if the origin is stable and there 
exists positive constant δ, bଵ, bଶ  0 and 0 ൏ η ൏ 1 
such that 

2 2

1

1 0 0|| ( ) || (1 || || ) || || ,b bx t b x t x η≤ +  

00, ;t x Bδ∀ ≥ ∀ ∈             (4) 

 exponentially stable if the origin is stable and 
there exists positive constant δ, bଵ, bଶ  0 such that 

2
1 0 0|| ( ) || || ||, 0, ;b tx t b e x t x Bδ

−≤ ∀ ≥ ∀ ∈    (5) 

 finite-time stable if the origin is stable and there 
exists a positive constant δ  0  and a function 
T: Bஔ ך ሼ0ሽ ՜ Թவ such that 

0
0( )

lim ( ) 0, .
t T x

x t x Bδ→
= ∀ ∈           (6) 

2.2 Nakamura’s Settling Time Design Method [9] 

In this subsection we consider the following chain 
integrator system: 

( ) ( ) ( ),c cx t A x t B u t= +           (7) 

where ݔ א Թ is a state, ݑ א Թ is an input, matrices 
ܣ א Թൈ and ܤ א Թൈଵ are defined as follows: 

0 1 0 0 0
0 0 1 0 0

,?
0 0 0 1 0
0 0 0 0 1

c cA B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      (8) 

For system (7), Nakamura et al. [9] proposed the 
following nonlinear settling time design method: 

Proposition 1: (Proposition 1 in Ref. [9]) 
Consider system (7) and static nonlinear feedback 

control ( )u q x=  such that the origin of the closed 
loop system is finite-time stable and maxT  defined by 
the following equation is given for some 0δ > . 

0 0max ( ).max x BT T x
δ∈=         (9) 

Then, the following input finite-time stabilizes the 
origin of Eq. (7) and guarantees settling time dT  for 
all 0x Bδ∈ : 

1 21

( ) ,n

q Sxu
d d

=                (10) 

where 1 2,d d  and S  are defined as follows. 

1 ,d

max

Td
T

=                (11) 

1
2 1

1 1

1 ( 1)
,

( 1)n

d
d

d d−

≤⎧
= ⎨ >⎩

          (12) 

1
21 1 21 1 21( , , , ).nS diag d d d d d−=       (13) 

2.3 Finite-Time P-PI Control [10] 

In this subsection, we introduce finite-time P-PI 
control. We consider the following linear control system: 

1 2 ,x x=                (14) 

2 ,x bu θ= +              (15) 

where ݔ ൌ ሾݔଵ, ଶሿ்ݔ א Թଶ  is a state, ݑ א Թ  is an 
input, b  is a known and θ  is an unknown 
constants. 

Theorem 1: Consider the following finite-time P-PI 
controller for system (14)-(15): 

2 1
3 3

2 0 0 3 0 00

ˆ
| | sgn( ) | | sgn( ) ,

t
u k u u k u u d

b
θτ= − − −∫ (16) 

3
4

0 2 1 1 1| | sgn( ),u x k x x= +        (17) 

where ݑ א Թ denotes velocity error, 1 2,k k  and 3k  
are positive constants as design parameters, θ̂  is 
estimated value of θ . 

If the origin of the close-loop system is 
asymptotically stable, the origin is finite-time stable. 

Remark 1: Note that controller (16)-(17) is 
different from Eq. (17) in Ref. [10] with respect to the 
existence of θ̂ . However, the proof of Proposition 1 
is still valid, and Theorem 1 holds. 
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3. Settling Time Design for Finite-time P-PI 
Control 

In this section, we propose a finite-time P-PI 
controller that guarantees the desired settling time. 

We propose a settling time design method for the 
finite-time P-PI controller for linear control system 
(14)-(15) and then we propose a parameter tuning 
method based on the proposed settling time design 
method for the finite-time P-PI controller. 

3.1 Problem Statement 

In this subsection, we show the problem statement 
to be discussed in this paper. 

Consider system (14)-(15) and the finite-time P-PI 
controller (16)-(17). Suppose that the settling time 

0( )T x  for a certain initial state 0x  is known with 
given parameters 1 2 3, ,k k k  and θ̂ . 

The objective of this paper is to design a controller 
to achieve the desired settling time dT  for the initial 
state 0x  under the above hypotheses. 

For this objective we refine the finite-time P-PI 
controller (16)-(17) based on Proposition 1. 

Note that the approach is heavily dependent on the 
initial state 0x . This implies that we can design the 
settling time of the finite-time controlled system in the 
limited manner. 

3.2 Finite-Time P-PI Control of Linear Control System 

In this subsection, we propose a finite-time P-PI 
controller that guarantees the desired settling time for 
linear control system (14)-(15) in the following main 
theorem of the paper. 

Theorem 2: Consider system (14)-(15) and 
finite-time P-PI controller (16)-(17). 

Assume that parameters 1 2,k k  and 3k  
asymptotically stabilize the origin, and the initial state 

0x  and θ̂  can be written as 0 01( ,0)x x=  and 
θ̂ θ= , respectively. Moreover the settling time 

0( )T x  is assumed to be known. 
Then the following controller (18)-(19) finite-time 

stabilizes the origin with the settling time 0( ) dT x T= . 

2 2
0 3

1 2 2 0 0
( )( , ) | | sgn( )

d

T xu x x k u u
T

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠  

3 1
0 3

3 0 00

ˆ( ) | | sgn( ) ,
t

d

T xk u u d
T b

θτ
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

∫    (18) 

3
4

0 2 1 1 1
0

| | sgn( ).
( )

dTu x k x x
T x

= +     (19) 

To prove Theorem 2 we prepare the following three 
lemmas. 

Lemma 1: Assume that for controller (18)-(19) the 
settling time for the initial state 0x  is 0( )T x . 

Consider the following coordinates transformation 
: x xφ : 

1 1,x x=                (20) 

2 2,dTx x
T

=               (21) 

( ) ( )( )3 3 0 1 2 0 1 20
ˆ, sgn , ,

t

d

Tx bk u x x u x x dt
T

θ θ= − + −∫
(22) 

and new time scale 0( ( ) / )dt T x T t= , where ௗܶ א Թ 
is a constant and t  is actual time. 

Then for an initial state 0x  on x -coordinates the 
controller (18)-(19) possesses ( ) 0dx T = . 

Proof. We consider system (14)-(15) and the 
finite-time P-PI controller (16)-(17). 

The close-loop system is obtained as follows: 

1 2 ,x x=                 (23) 

2
3

2 2 0 0 3| | sgn( ) ,x bk u u x= − +      (24) 

1
3

3 3 0 0| | sgn( ),x bk u u= −       (25) 

where 3x  is defined as follows: 
1
3

3 3 0 00
ˆ| | sgn( ) .

t
x bk u u dτ θ θ= − + −∫    (26) 

Let a solution of the differential Eqs. (23)-(25) 
starting at x  be ( ; )t xϕ . 

By using coordinates transformation (20)-(22) and 
our proposed finite-time controller (18)-(19), we 



Settling Time Design and Parameter Tuning Methods for Finite-time P-PI Control 

 

4

obtain the close-loop system as follows: 

1
2 ,dx x

dt
=               (27) 

2
2 3

2 0 0 3| | sgn( ) ,dx bk u u x
dt

= − +      (28) 

1
3 3

3 0 0sgn( )dx bk u u
dt

= −         (29) 

Recall that ( ; )t xϕ  is a solution for Eqs. (23)-(25), 
and the solution of the differential Eqs. (27)-(29) is 

( ; )t xϕ . 
Since 0( ; ) 0t T x xϕ = = =  in Eqs. (23)-(25), 

0( ; ) 0t T x xϕ = = =  is in Eqs. (27)-(29). 
This completes the proof. 
Lemma 2. Suppose that assumptions in Lemma 1 

are satisfied. Assume that for system (14)-(15) 
controller (18)-(19) finite-time stabilizes the origin. 

Then controller (18)-(19) finite-time stabilizes the 
origin in both time scale t  and t . 

Proof: The close-loop system with controller 
(18)-(19) is the same as one with controller (16)-(17). 

Note that coordinates transformation ϕ  is 
diffeomorphic, and Lemma 2 holds.  

Lemma 3. Suppose that assumptions in Lemmas 1 
and 2 are satisfied. 

Then the initial state 0x  on x -coordinates the 
settling time is dT  in time scale t  by controller 
(18)-(19). 

Proof. By using the time scale transformation 
( / )dt T T t= , 

.d
d

Tt T t t T
T

= = ⇔ =        (29) 

The controller (18)-(19) settles the state at the 
origin at ݐ ൌ ௗܶ.   

Proof of Theorem 2. For the initial state 

0 01( ,0)x x=  and θ̂ θ= , an initial state of the 
close-loop system (27)-(29) is denoted as 0 01( ,0)x x= . 

This implies that in this case the initial state is 
transformed into the same state by coordinates 
transformation ϕ . 

According to Lemma 1, the settling time of the 
close-loop system (27)-(29) is 0( )T x  in time scale t . 

According to Lemma 3, the settling time of the 
close-loop system (27)-(29) is 0( ) dT x T=  in time 
scale t . 

By Lemma 2, controller (18)-(19) finite-time 
stabilizes the origin. 

This completes the proof. 
By the same discussion as the proof of Proposition 

1 in Ref. [9] (Proposition 1 in this paper) the 
following corollary of Theorem 2 holds. 

Corollary 1. Consider system (14)-(15) and the 
finite-time P-PI controller (16)-(17). Suppose that 

maxT  defined by the following equation is given for 
some 0δ >  and 1 2,k k  and 3k : 

0 0( , )max ( , ).max x BT T x
δθ θ∈=        (31) 

Then, the following input finite-time stabilizes the 
origin of (14)-(15) and guarantees settling time dT  
for each initial state 0 01 02( , , )x x x Bδθ= ∈ : 

2 2
3

2 0 0| | sgn( )max

d

Tu k u u
T

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 

3 1
3

3 0 00

ˆ
| | sgn( ) ,

tmax

d

Tk u u d
T b

θτ
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

∫    (32) 

3
4

0 1 2 2 1 1 1( , ) | | sgn( ).d

max

Tu x x x k x x
T

= +    (33) 

3.3 Parameter Tuning Method 

In this subsection, we propose a parameter tuning 
method by using the proposed settling time design 
method for finite-time P-PI control. 

We replace the controller (18)-(19) of 0/dT T k= . 
Then, we obtain the following a new finite-time 

controller (34)-(35) for system (14)-(15). 
2

2 3
0 02

0

| | sgn( )ku u u
k

= −  

1
3 3

0 03 0
0

ˆ
| | sgn( ) ,

tk u u d
k b

θτ− −∫     (34) 
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3
4

0 0 2 1 1 1| | sgn( ),u k x k x x= +        (35) 

where 0 1 2 30, , ,k k k k>  and θ̂  are design 
parameters. 

Corollary 2. Assume that for system (14)-(15) 
controller (18)-(19) finite-time stabilizes the origin 
with given parameters 1 2 3, ,k k k  and θ̂ . 

Then for each 0 0k >  controller (34)-(35) 
finite-time stabilizes the origin for the initial state 0x . 

Note that if 0 1k <  the settling time becomes 
smaller and if 0 1k >  one becomes larger. 

4. Computer Simulation 

In this paper, we proposed the controller that 
guarantees the desired settling time in Theorem 2. To 
ensure the basic idea of the proposed method, we 
consider a settling-time design problem for a simple 
second-order linear system. 

We consider the following linear control system. 

1 2,x x=                (36) 

2 1.0.x u= +              (37) 

For system (36)-(37), we consider the following 
nonlinear finite-time controller: 

2 1
3 3

0 0 0 00
ˆ5.0 | | sgn( ) 5.0 | | sgn( ) ,

t
u u u u u dτ θ= − − −∫  (38) 

3
4

0 2 1 12.0 | | sgn( ),u x x x= +       (39) 

ˆ 1.0.θ =                (40) 

Fig. 1 illustrates time histories of the state for the 
initial state 0 01 02[ , ] [ 5.0,0]x x x= = − . By Fig. 1, we 
can find that the settling time T = 3.338 s. We set the 
desired settling time ௗܶ ൌ 1.50 s for the initial state

0 01 02[ , ] [ 5.0,0]x x x= = − . We can obtain the 
following input: 

2
3

0 024.760 | | sgn( )u u u= −  

1
3

0 00
ˆ55.100 | | sgn( ) ,

t
u u dτ θ− −∫      (41) 

3
4

0 2 1 10.449 2.0 | | sgn( ),u x x x= +     (42) 

ˆ 1.0.θ =               (43) 

Fig. 2 illustrates respective time histories of the 
state with the input (41)-(43). 

Though the input by Eqs. (41)-(43) is much bigger 
than the original one, we can permit that the state is 
settled at the origin at T = 1.50 s. 

We confirmed that our proposed method can 
achieve the desired settling time. 
 

 
Fig. 1  Original controller: State. 
 

 
Fig. 2  Modified controller guaranteeing ࢊࢀ ൌ . ሾ࢙ሿ : 
State. 
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5. Application to Robot Manipulator 

In this section, we apply our proposed method to a 
position control of a robot manipulator. 

5.1 n-link Robot Manipulator System [10] 

In this subsection we consider a serial n-link robot 
manipulator modeled by the following equation: 

( ) ( , ) ( ) ( ) ,M C G Fφ φ φ φ φ φ φ τ+ + + =    (44) 

where ߶ ൌ ሾ߶ଵ, ڮ , ߶ሿ் א Թ  consists of n-joint 
angles, M  represents the inertia matrix, ܥ: Թ ൈ
Թ ื Թൈ denotes the centripetal-Coriolis matrix, 
:ܩ Թ௫ ื Թ  represents the gravity effects, 
:ܨ Թ ื Թ  denotes the friction effects, and 
߬ ൌ ሾ߬ଵ, ڮ , ߬ሿ் א Թ  is a torque input vector.   
This paper considers nonredundant robot  
manipulator; 6n ≤  is supposed and 
ݍ ൌ ሾݍଵ, ڮ , ሿ்ݍ א Թ  denotes the end-effector 
position in a task-space. q  and φ  have the 
following relation: 

( ),q h φ=               (45) 
where ݄: Թ ื Թ denotes a forward kinematics. In 
this paper, we consider a control problem of 
end-effector position q  to constant desired position

1[ , , ]T
d d dnq q q= . In this paper, we assume that the 

matrix 

( ) ( ),hJ q
q

φ∂
=

∂
             (46) 

is non-singular for all q  in the domain of interest. 

5.2 Finite-Time P-PI Control for n-link Robot 
Manipulator 

In this subsection, we extend our proposed method 
to end-effector position control of the n-link robot 
manipulator. 

We propose the following inverse Jacobian based 
on nonlinear controller for position control of the 
robot manipulator system (44) [10]. 

  (47) 

0 01 0[ , , ]T
nu u u=  

3
4

11 1 1 1 1
1

0
3
4

1

| | sgn( )
( ) .

| | sgn( )

d d

n n dn n dn

k q q q q
k J

k q q q q

φ φ−

⎡ ⎤
− −⎢ ⎥

⎢ ⎥= +
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

(48) 

6. Experiments 

In this section we show experimental environments 
and results of end-effector position control by using 
the proposed method for a 3-DOF robot manipulator. 

6.1 Experimental Facility 

We implement the proposed controller on a robot 
manipulator PA-10 produced by Mitsubishi Heavy 
Industries, Ltd (MHI). We use three joints of PA-10 as 
illustrated in Fig. 3. The PA-10 equips an absolute 
resolver with 50.9 10−×  rad resolution on each joint. 
The PA-10 is controlled by a PC with 2 ms sampling 
interval and limited the maximum torque. 

The forward kinematics [ , , , ] ( )Tq x y z h φ= =  is 
obtained as follows: 

2 1 2 1 3 1 2 3cos sin ( )cos sin( ),x l l iφ φ φ φ φ= + + +  (49) 

2 1 2 1 3 1 2 3sin sin ( )sin sin( ),y l l lφ φ φ φ φ= + + +  (50) 

1 2 2 2 3 2 3cos ( )cos( ),z l l l lφ φ φ= + + + +    (51) 

 

2
21 3

01 012
0

1
31 3

01 01 13 0

2
2 3

0 02
0

1
3 3

0 03 0

| | sgn( )

ˆ     | | sgn( )

,

| | sgn( )

ˆ     | | sgn( )

t

o

n
n n

tn
n n n

o

k u u
k

k u u d
k

k u u
k

k u u d
k

τ θ

τ

τ θ

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

∫

∫
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Fig. 3  Robot Manipulator PA-10. 

 
where 1 0.317l =  m, 2 0.45l =  m and 3 0.55l =  m 
are link lengths of PA-10. 

In experiments, the control objective is asymptotic 
stabilization of the end effector position q  at the 

desired position [ , , ] [0.2, 0.3,0.6]T T
d d dx y z = − [m]. 

In the experiments, we choose 
11 12 13 21 22 23[ , , ] [15,15,15],[ , , ] [450,550,350]k k k k k k= =

 and 31 32 33[ , , ] [150, 220,180]k k k = . These 
parameters are used in experiments of Nakamura et al. 
[11]. 

6.2 Experiment of Proposed Finite-Time P-PI Control 

In this subsection, we show experimental results of 
end-effector position control of the robot manipulator 
by using our parameter tuning method to the 
finite-time P-PI controller. 

In the case of 0 0.975k = , Figs. 4-6 illustrate time 
histories of inputs, state variables and position control 
error respectively. 

Tables 1 and 2 summarize the performances of the 
controllers with variations of 0k  from 45 s to 55 s. 

According to Tables 1 and 2, our parameter tuning 
method can perform 0.27 μm in mean error and 1.0 
μm in standard deviation. 

 
Fig. 4  Experimental result of proposed FT-P-PI: Input. 
 

 
Fig. 5  Experimental result of proposed FT-P-PI: State. 
 

 
Fig. 6  Experimental result of proposed FT-P-PI: State 
(Error). 
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Table 1  Results of main experiments (standard deviation).  

0k  0.95 0.9625 0.975 1.00 

[ ]x m  1.079e-6 1.101e-6 1.027e-6 1.227e-6 

[ ]y m  6.324e-7 6.514e-7 6.514e-7 8.8408e-7 

[ ]z m  1.130e-6 9.109e-7 9.109e-7 2.990e-6 
 

Table 2  Results of main experiments (mean error). 

0k  0.95 0.9625 0.975 1.00 

[ ]x m  8.193e-6 3.336e-7 6.624e-8 1.855e-7 

[ ]y m  2.575e-7 2.261e-7 2.756e-7 2.342e-7 

[ ]z m  1.126e-7 3.639e-7 4.013e-8 7.703e-7 

6.3 Experiment of Conventional Finite-Time P-PI 
Control 

In this subsection, we show experimental results of 
end-effector position control of the robot manipulator 
by conventional finite-time P-PI control. 

Figs. 7, 8 and 9 illustrate time histories of inputs, 
state variables and position control error respectively. 

Table 3 summarizes the performances with respect 
to mean error and standard deviation from 45 s to   
55 s. 

According to Table 3, conventional method can 
perform 0.77 μm in mean error and 3.0 μm in standard 
deviation. 

6.4 Experiment of Conventional P-PI Control 

In this subsection, we show experimental results of 
end-effector position control of the robot manipulator 
by conventional P-PI control. 

In the conventional method, since it is not possible 
to use the parameters of the finite-time control, we 
choose  

],10,10,10[],,[ 131211 =kkk
],500,900,900[],,[ 232221 =kkk  

and 31 32 33[ , , ] [400,350, 200]k k k = . 
Figs. 10-12 illustrate time histories of inputs, state 

variables and position control error respectively. 
Table 4 summarizes the performances with respect 

to mean error and standard deviation from 45 s to   
55 s. 

 
Fig. 7  Experimental result of conventional FT-P-PI: 
Input. 
 

 
Fig. 8  Experimental result of conventional FT-P-PI: State. 
 

 
Fig. 9  Experimental result of conventional FT-P-PI: State 
(error). 
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Table 3  Results of conventional finite-time P-PI 
experiments. 

0k  x [m] y [m] z [m] 

Mean error 1.855e-7 2.342e-7 7.703e-7 
Standard 
deviation 1.227e-6 8.408e-7 2.990e-6 

 

 
Fig. 10  Experimental result of conventional P-PI: Input. 
 

 
Fig. 11  Experimental result of conventional P-PI: State. 
 

According to Table 4, the conventional P-PI control 
can perform 4.6 μm in mean error and 5.8 μm in 
standard deviation. 

6.5 Discussion 

Fig. 13 illustrates the standard deviations. We can 
confirm that the standard deviation is improved by 
changing 0k . This confirms effectiveness of our 
proposed parameter tuning method. In particular, we 

 
Fig. 12  Experimental result of conventional P-PI: State 
(Error). 
 

Table 4  Results of conventional P-PI experiments. 

0k x [m] y [m] z [m] 

Mean error 4.609e-6 1.951e-6 1.689e-6 
Standard 
deviation 5.80e-3 2.40e-3 -1.90e-3 

 

 
Fig. 13  Accuracy of state error in each . 
 

can see that the accuracy of the x-axis is greatly 
improved when we choose 0 0.975k = . 

Table 5 illustrates the result of settling times. 
Because 0k s are close to 1 in all cases, the settling 
times are not changed so much. We can see that the 
settling times of the finite-time control are smaller 
than the conventional method, in all cases. On the 
contrary, mean error has been greatly improved. 
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Table 5  Results of settling time (േ %). 

0k  x  axis[s] y  axis[s] z  axis[s] 
Conventional 
P-PI 10.4677 10.3119 8.5951 

Finite-Time P-PI 
݇=1.0 6.8968 1.9753 2.0285 

Finite-Time P-PI 
݇=0.975 6.5648 1.9543 2.5822 

Finite-Time P-PI 
݇=0.9625 6.3740 1.8151 3.6399 

Finite-Time P-PI 
݇=0.95 5.9891 1.7453 3.7523 

7. Conclusions 

In this paper, we proposed a settling time design 
method for finite-time P-PI control. The proposed 
method can design the desired settling time and the 
effectiveness is confirmed by computer simulation. 

For end-effector position control of the robot 
manipulator, our proposed method can improve 
accuracy of the end-effector position. 

This paper does not discuss tracking control 
problem. This remains future work. 
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