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Abstract: In calculating the seismic response of a building, the Spanish Instructions NCSE-02 and CTE, paragraph 3.7.7 (also 
EUROCODE 8 paragraph 1.2 part 1-1), establish that if for all storeys the interstorey drift sensitivity coefficient, ξ, is less than or equal 

to 0.1, then it will not be necessary to consider the effects of the 2nd order ( P  effects). In this paper the authors review this claim, 

because even for 0.1  , increases of the bending moment at the ends of the columns due to the inclusion of second order effects can 

account for between 15% and 34% of its value for static service loads. This is significant since most adverse effects are shown in the 
lower height buildings (up to 5 floors) which it is precisely the range in which most of the housing stock of Spain is located. Finally, the 

authors delimit the coefficient for buildings of lesser height (up to 5 floors), proposing to lower it generally to 0.06  . 
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1. Description of the Problem and the 
Building Used as an Example 

The NCSE-02 [1] and CTE [2] Spanish Instructions 

are instructions that allow us to study dynamic effects 

in different structural elements. Spain is a country that 

has different provinces in which dynamic studies are 

important and mandatory. In this article, it is analyzed 

the interstorey drift sensitivity coefficient, and consider 

whether or not the 2nd order effects are important in 

building structures to dynamic stresses.  

This coefficient is defined in Eurocode 8 [3], but one 

of the conditions of whether or not to consider the effects 

of the 2nd order of coefficient, is formulated identically 

in Spanish Instructions NCSE 02 and the CTE. 

The interstory drift sensitivity coefficient depends 

on the total gravity load at and above the story 

considered in the seismic design situation P, and the 

design interstory drift, evaluated as the difference of 

the average lateral displacements sd  at the top and 

bottom of the story under consideration d, which is 

                                                           
Corresponding author: Martinez Valle J. M., Ph.D., 

assistant professor, research fields: structural dynamics, non 
linear finite elements for plates and shells. 

directly proportional, and the total seismic story shear 

F and interstory height h, which is inversely 

proportional. To analyze the problem, we take a 

building type, as shown in Fig. 1, and study the 

influence of 2nd order effects using the corresponding 

theoretical model we develop in the body of the article. 

The example in Fig. 1 is, a regular rectangular 

concrete building of dimension 25 × 25 m with 25 

columns arranged to give rise to 5 frames in each 

direction with spacing of 5.50 m. For the analysis, we 

adopt the hypotheses that it might have 2, 4, 7, and 10 

floors, the loadings considered are for medium duty use, 

and that the location of the building is in an average 

Spanish earthquake zone. 

The section of the beams of the floor is 0.30 × 0.40 

m (Fig. 2). The dead load is the corresponding to a 

0.28 m thick slab, including flooring and ceiling. 

Overloading is the appropriate use of public spaces 

with chairs and tables. The basic seismic acceleration 

is 0.102 g and the coefficients of terrain features and 

contribution are C = 1.4 and K = 1. 

With these dimensions, loads and frequently used 

materials (concrete HA-20 or 25 and reinforcement 

steels B-500) the obtained mechanical loading 
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Fig. 1  Rectangular plant of building of size 25 m × 25 m 
with the situation of the columns.  
 

 
Fig. 2  Simple shear model for the frame A-B under the 
assumptions of 2, 4, 7, and 10 storeys.  
 

amounts of a permanent reinforcement are quite 
normal (e.g., 4-6  16-20, diameter of the concrete 

reinforcing bar, for columns of 25 × 25 cm on two 
floors, or 10-12  20 for columns, 40-45 × 40-45 cm 

in seven storeys). 

2. Geometric Stiffness Matrix of First Order 
of Beams of 2d Frames 

In order to consider the 2nd order effects (effects), 

we must know the stiffness matrix, including the axial 

force in local coordinates of a beam belonging to a 

planar structure of rigid nodes, connected rigidly at 

both ends. A very appropriate methodology for this 

deduction is based on the consideration of the 

equilibrium of the slice in the deformed geometry. 

Alternatively, we can consider nonlinear expressions 

of deformations of a beam in bending (valid for small 

deformations and moderate or large displacements) [4]. 

In this paper, we choose the former for its better 

description of the problem. In the following paragraphs 

we expose the non-linear theory of beams including 

shear deformation (first order shear deformation theory) 

which is the basis for the description of the problem.  

Let us consider a beam whose initial neutral axis and 

deformed neutral axis initial imperfections are 

represented as in Fig. 3a. As a consequence of 

geometric initial imperfections, the centerline of the 

beam is deflected by the amount. The transverse 

sections are rotated at an angle. 

Consider a slice of this beam of length dx, unstressed 

axial, bending and shear, and its geometry deformed as 

in Fig. 3b, where the slope of the centerline is given by 

the shift v along the axis relative to one side, and on the 

other is given by 

  (1) 

We can express the sum as a fraction loading of the 

displacement v and consequently, we obtain 

 (2) 

If we use the bending theory of thin beams, where

M  = E•I v   and establish the equilibrium of the slice 

into the deformed geometry, we obtain 

    (3) 

 
Fig. 3  Deformed configuration of a beam (left), 
equilibrium of a slice of the beam in its deformed 
configuration (right). 
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       (4) 

The coefficient gives us an idea, as a percentage, of 

the level of imperfections on the de-formed 

configuration. Solving for Q in Eq. (2), and deriving 

and substituting in Eq. (1), we reach the following 

differential equation. 

       (5) 

In studying free transverse oscillations P = 0, such 

that the equation reduces to 

        (6) 

This is usually written as 2 =  1 � N/(E·I), as 

, whose general solution is given by the 

following expression: 

v= cos( x) sen( x)+Cx+D    (7) 

Integration constants A, B, C, and D are provided by 

our boundary conditions: 

, ,    (8) 

where vi and , are respectively the deflection and 

rotation of the end i. If we particularize Eq. (7) on the 

values x = 0 and x = L, we obtain: 

+D  

cos( L) sen( L)+C L+D     (9) 

= +C 

= sen( L) cos( L)+C 

which we can write in matrix form, as follows: 

 (10) 

If we suppose that the inverse matrix is partitioned in 

the form 

           (11) 

then, if we incorporate the horizontal displacements u1 

and u2 from the beam ends, and we use the usual 

notation in the theory of structures in which 

displacements and rotations of the ends of the beam are 

expressed by 
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the equation of the deformed beam is:  

v= cos( x) sen( ·x)+C·x+D= 
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According to Eq. (10), the matrix , can be 
written as: 

=  
2

2

2

3 2
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If the loads at the ends of the beam along the x-axis 

are designated by , the matrix kviga can be deduced 

from the bending moment expressions ( ), shear 

force (Q) and axial force (N) by 
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(Q)x=0=- = = 

 (15) 

( )x=0=-M1=EI( )x=0 

(Q)x=L= =  = 

  
( )x=0=M2=E·I( )x=L 

Substituting in the above equations the derivatives of 

the deflection v, calculated from Eq. (13), and 

particularizing at x equals zero or L, as appropriate, we 

obtain: 

 

+ 

 (16) 

Replacing the four submatrices of order 2 × 2, 

in the above Eq. (13) and operating, we obtain the 

equation of beam loads movements, pviga = vigadviga 
in local coordinates: 

=         (17) 

with  equal to 

    (18) 

 

or in a more compact form 

           (19) 

Where  and 

is the beam stiffness matrix in local coordinates, 

including the influence of the axial force N. Let us note 

that we have identified, for the differentiation of linear 

stiffness matrix kviga, by the stroke located on k, and 

which depends, Via , on the value of the axial force 

on the beams (N). 

Apparently, the expression of the stiffness matrix of 

the beam expressed in Eq. (18) , is quite different 

from the known kviga, without the inclusion of the axial 

force. However, we can find a similar expression when 

we consider that 
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and if we call to 

(21) 

where c and s are adimensional functions, called 

stability functions 

ω·L-sin(ω·L)
c=

sin(ω·L)-ω·L·cos(ω·L)
; 

      (22) 

which were originally derived by Lundquist and Kroll 

[5], and later developed by Merchant [6] under 

different methodology and in another context, Fig. 4. 

We prefer the new original approach presented here [7], 

because we want to show the identity of procedures and 

goals achieved over time, even though at times the 

results appear to be different and have been obtained by 

using very different methodologies. 

Operating conveniently we found that the matrix Eq. 

(16), for a beam rigidly connected at both ends and 

belonging to a 2D frame, is written as 

pe1 = 11·de1 + 12·de 

pe2 = 21·de1 + 22·de2           (23) 

or in matrix form 

= ·      

 

(24) 

being 

11= ; 

12=( 21)T=  

22=              (25) 

Comparing these expressions with the known kij, it is 

clear that the functions are simply multiplier factors of 

the coefficients of the stiffness matrix of a beam 

without axial forces and can conveniently be expressed 

as functions of the relationship between axial force N 

and the Euler critical load Ncr = , as shown in  

Fig. 5. Note that all are 1 for N = 0, so that =

 for N = 0. 

3. Geometric Stiffness of a Column Belonging 
to Simple Shear Model 

If the beam is one of the groups of carriers of a frame 

modeled as a simple shear model, Fig. 6, and we take 

the global axes of the figure. 
 

 
Fig. 4  Stability Functions.  
 

 
Fig. 5  Graphical representation of the functions .  
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Fig. 6  Simple shear model for a frame of 2 storeys. 
 

then Eq. (18) can be written as  

(26) 

Therefore, we obtain 

      (27) 

As for N = 0, the functions  are preferred indeterminate, and we prefer to develop 

them using Taylor series and limiting the developments to the first two terms, we obtain 

 

 

         (28) 

 

If we proceed similarly for all matrix elements, the 

second addends constitute the geometric stiffness 

matrix of the first order. If we increase the terms of the 

development, the third summands constitute the 
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geometric stiffness matrix of second order and so on. 

For the shear efforts at beam ends we have 

 (29) 

Thus, the stiffness of the column of the media set of 

a frame modeled as a simple shear model is 

         (30) 

where is the stiffness of each of the columns forming 

the group and N is the area weight condition of all 

floors above the considered column. As already 

discussed,   marks the level of initial imperfections, 

in percentage terms, relative to the deformed column. 

To circumvent the approach that involves limiting 
the Taylor series expansion of 1  to the first two 

terms, and also based on the representation of Fig. 5, 

we can choose to use a very approximate analytical 

expression for 1 . If we call  the 

function 1  is given by 1 1     , in which case 

the stiffness of the media set of columns of a frame 

modeled as a simple shear model is 

      

(31) 

Although the differences obtained by taking Eq. (30) 

or (31) are not significant, we have opted for the latter 

as being more accurate, even slightly, and is 

implemented in the program for use with equal ease. 

4. Results of Calculating the Building Taken 
as an Example 

The following cases have been solved with the help 

of a program written in Matlab (following the usual 

methodology for dynamic calculation of structures) 

whose key steps are: 

 Calculation of the stiffnesses of the columns of the 

media set of a frame by Eq. (30). 

 Calculation of the interstorey drift sensitivity 

coefficients for each floor according to the equation: 

       (32) 

where all the variables have been defined previously; 

the subscript “p” refers to the stiffness and length of the 

column or group of columns respectively.  

 Calculation of the natural frequencies of the 

structural model. 

 Calculation of the maximum values of the 

variables of the equations resulting from 

de-coupling the initial system of differential 

equations, using the response spectrum proposed by 

the Spanish instruction NCSE 02. 

 Calculation of the maximum values of the 

displacements by the method of least squares. These 

maximum values of the displacements will allow us 

to calculate the shear stresses and the resulting 

bending moments. 

Case A Two Storey Type Building 

For the ratio of stiffness supposed in paragraph 1, the 

bending moments at the top of the column in the 

ground floor and at the end of the lintel for static loads 

are 

 

      (33) 

The Interstorey Drift Sensitivity Coefficients,  , 

and maximum deflections are in Table 1. 
The stiffness pk  of the ground floor columns group 

is pk  = 7.0182 KN/m and the increases of shear force 

and bending moment, as a result of considering the 

coupling of axial bending, are 

 

     
(34) 

       (35) 

The latter increase in the bending moment on the 

column represents an increase of 16.2% from the value 

of the moment due to gravity loads, and an increase of 
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Table 1  Interstory drift sensitivity coefficient for 2 story 
frame.  

Interstory Drift Sensitivity Coefficient 

ξ1 = 0.0735 ξ2 = 0.0193 
Without consideration  

to axial force 
Coupling of bending moment 

and axial forces 

1U  
1U  

0.0335 0.0353 

0.0405 0.0421 
 

5% compared with the sum of the value of the moments 

due to static loads more dynamic loading. However, 

increases incurred as a result of considering a typical 

level of initial imperfections are not significant. 

Case B Four Storey Type Building 

For the ratio of stiffness supposed in paragraph 2, the 

bending moments at the top of the column in the 

ground floor and at the end of the lintel for gravity 

loads are 

 

     (36) 

The Interstory Drift Sensitivity Coefficients,  , and 

maximum deflections are in Table 2. 
The stiffness pk  of the ground floor columns group 

is pk = 14,555 kN/m and the increases of shear force 

and bending moment, as a result of considering the 

coupling of axial bending, are 

 

      (37) 

      (38) 

This latest increase of the bending moment on the 

column represents an increase of 33.59% from the 

value of the moment due to gravity loads, and an 

increase of 5.7% from the sum of the value of the 

moments due to gravity loads more dynamic loading. 

However, increases incurred as a result of considering 

a typical level of initial imperfections are not 

significant. 

Table 2  Interstory drift sensitivity coefficient for 4 story 
frame.  

Interstory Drift Sensitivity Coefficient 

ξ1 = 0.0709 ξ2 = 0.0279 ξ3 = 0.0386 ξ4 = 0.0193 
Without consideration  

to axial force  

1U  

Coupling of bending moment 
and axial forces 

1U  

0.0264 0.0282 

0.0346 0.0364 

0.0474 0.0493 

0.0544 0.0562 
 

Case C Seven Story Type Building 

For the ratio of stiffness supposed in paragraph 2, the 

bending moments at the top of the column in the 

ground floor and at the end of the lintel for gravity 

loads are 

 

  (39) 

The Interstory Drift Sensitivity Coefficients,  , and 

maximum deflections are in Table 3. 

The stiffness pk  of the ground floor columns group 

is pk = 45,999 kN/m and the increases in bending 

moment and shear forces, as a result of considering the 

coupling of axial deflection, are 

 

     (40) 

       (41) 

This latest increase of the bending moment on the 

column represents an increase of 18.08% over the 

value of the moment due to gravity loads, and an 

increase of 2.7% from the sum of the value of the 

moments due to static loads more dynamic loading. 

However, increases incurred as a result of considering 

a typical level of initial imperfections are not 

significant. 

Case D Ten Story Type building. 

For the ratio of stiffness supposed in paragraph 2, the 
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Table 3  Interstory drift sensitivity coefficient for 7 story 
frame. 

Interstory Drift Sensitivity Coefficient 

ξ1 = 0.0392 
ξ2 = 0.0302 
ξ5 = 0.0279 

ξ3 = 0.0251 
ξ4 = 0.0193 
ξ6 = 0.0386 
ξ7 = 0.0193 

Without consideration  
to axial force  

1U  

Coupling of bending moment 
and axial forces 

1U  

0.0126 0.0130 

0.0201 0.0206 

0.0266 0.0272 

0.0370 0.0378 

0.0454 0.0463 

0.0588 0.0601 

0.0668 0.0681 
 

bending moments at the top of the column in ground 

floor and at the end of the lintel for gravity loads are 

 

 (42) 

The Interstory Drift Sensitivity Coefficients,  , and 

maximum deflections are in Table 4. 
The stiffness pk  of the ground floor columns group 

is pk =112,150 KN/m and the increases in bending 

moment and shear forces, as a result of considering the 

coupling of axial deflection, are 

(43) 

      
(44) 

This latest increase of the bending moment on the 

column represents an increase of 10.87% from the 

value of the time due to gravity loads, and an increase 

in 1.35% from the sum of the value of the moments due 

to gravity loads more dynamic loading. However, 

increases incurred as a result of considering a typical 

level of initial imperfections are not significant. 

5. Dimensioning Interstory Drift Sensitivity 
Coefficient 

In the seismic calculation of a building, Spanish 

Instructions NCSE-02 and therefore, the CTE,  

Table 4  Interstory Drift Sensitivity Coefficient for 10 
Story Frame.  

Interstory Drift Sensitivity Coefficient 

ξ1 = 0.0230   
ξ2 = 0.0109   
ξ3 = 0.0236 
ξ4 = 0.0206   
ξ5 = 0.0302   

ξ6 = 0.0251 
ξ7 = 0.0372   
ξ8 = 0.0279   
ξ9 = 0.0386 

 ξ10 = 0.0193 
Without consideration  

to axial force  

1U  

Coupling of bending moment 
and axial forces 

1U  

0.0066 0.0067 

0.009 0.0091 

0.0145 0.0146 

0.0195 0.0196 

0.027 0.0273 

0.0335 0.0339 

0.0438 0.0444 

0.0522 0.053 

0.0661 0.0673 

0.0746 0.0759 
 

establish in paragraph 3.7.7 that: “As long as the 

collapse of the head of the building does not exceed 

two per thousand of the height, it is not necessary to 

consider the 2nd order effects”. 

On the other hand, it will not be necessary to 

consider the 2nd order effects, in line with that set by 

Eurocode Nº 8 (Paragraph1-2 Part 1-1), if for all 

storeys the Interstory Drift Sensitivity Coefficient is 

less than 0.1. 

As we can see, what is actually limiting the 

destabilizing moment is that the column is less than  

10% of the stabilizing moment. Because the criterion 

of the 10% limit seems to be arbitrary, we propose to 

replace it with another limit that is more in line with the 

structural reality. 

If we assume a square section column of side “b”, for 

frequently used materials and for the dimensions set 

out in paragraph 1, the relationship between the critical 

load and the axial calculation is , so that 

we obtain Ncalc = 0.075 Ncrit for b = 0.30 m, and for   

b = 0.35 m (corresponding to buildings of lesser 

heights), we have Ncalc = 0.055 Ncrit. Accordingly, we 

adopt 
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Ncalc < 0.075 Ncrit            (45) 

Under this assumption, coefficient, defined in 

section 3,

 

, gives  

      (46) 

Keeping the definition for the interstory drift 

sensitivity coefficient and by taking into account Eq. 

(27), we can write 

        (47) 

From which we deduce  and as

1 1   , we obtain . So, 

              (48) 

By virtue of Eq. (46), it must be satisfied that
 0.075   , i.e.,

 

1
1  0.075

1.216?
 


. From which 

we deduce 
0.0667                 (49) 

which is consistent with the results obtained in the 

practical cases A and B of section 4. 

6. Conclusions 

In the seismic calculation of a building, Spanish 

Instructions NCSE-02 and thus, the CTE, establish in 

paragraph 3.7.7 that: “As long as the collapse of the 

head of the building does not exceed two per thousand 

of the height, it is not necessary to consider the effects 

of 2nd order”. 

On the other hand, it will not be necessary to 

consider the 2nd order effects (s effects), in line with 

that set by Eurocode 8 (Paragraph1-2 Part 1-1), if for 

all storeys the interstory drift sensitivity coefficient 

fulfills:  

            (50) 

We show in this discussion, based on the current 

state of knowledge, it is not justified to ignore the 2nd 

order effects ( P effects): 

(1) Because it is not justified that the spectral modal 

analysis be simplified, because a high-level program 

such as MATLAB can very easily address a 

multimodal spectral analysis study for frames, the 

simple model of shear or associating the nodes of the 

structure of the inertial properties of the frame beams 

and performing a calculation of stiffness. 

(2) Because the inclusion of 2nd order effects 

(effects), does not add any conceptual effort nor 

complicate the calculation. Additionally, if we follow 

the line of thought of Bazant [8] and truly think that the 

equilibrium, static or dynamic loading, occurs in the 

deformed geometry, it is logical that the calculation 

includes this. 

(3) Because we show that although the Interstory 

Drift Sensitivity Coefficient does not reach the value of 

0.1, increases of the bending moment at the ends of the 

columns resulting from the refinement of the 

calculation including the second order effects, can 

account for between 15% and 34% of its value for 

static service loads. 

(4) Because most adverse effects are shown in lower 

height buildings (up to 5 floors), which is precisely the 

range in which most of the housing stock of Spain is 

located, to be in the highest limit allowed by the 

various planning regulations (PGOU). 

(5) As in section 5, we limited the Interstory Drift 

Sensitivity Coefficient to 0.0667 for buildings of lower 

height (up to 5 floors), so we propose that it is generally 
lowered to 0.06   instead of 0.1   as proposed in 

Eurocode 8 and the Spanish Instruction NCSE-02. 
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