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There is ample evidence that experts’ performance is mostly due to domain specific knowledge. Some complex 

memory structures, termed templates, have been theorised to underpin strategic thinking in expert chess players. A 

behavioural study and computer simulations have been used to test this hypothesis. The behavioural study is the 

first to show that experts identify strategic systems with more accuracy than novices do. A new artificial neural 

network model is introduced to implement visuospatial templates. The simulations indicate that templates 

adequately model identification of strategies in novice and expert players. Both results support the view that 

templates underpin strategic thinking. The findings constitute a demonstration of the dependence of strategic 

thinking on memory processes and open the door for a new theoretical approach to understand high-level cognition. 
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Introduction 

Templates are sophisticated memory units that materialize only in the later stages of expertise 

development (Gobet & Simon, 1996b). The use of memory templates by experts has been documented in 

several domains such as language acquisition (Freudenthal, Pine, & Gobet, 2009), computer programming 

(Gobet et al., 2001), and physics (Lane, Cheng, & Gobet, 2000). Templates underpin experts’ performance in 

many tasks such as perception (Chase & Simon, 1973; De Groot & Gobet, 1996; Ferrari, Didierjean, & 

Marmèche, 2006), memory (Gobet & Simon, 1996b; 2000), imagery (Campitelli & Gobet, 2005; Saariluoma, 

1991), and problem-solving (Bilalic, McLeod, & Gobet, 2008; Campitelli & Gobet, 2004). In chess, a template 

typically codes the position of a dozen chessmen and includes optional slots for which the values are 

determined during recognition. In addition to perceptual flexibility, templates provide access to a rich database 

of knowledge such as tactical manoeuvres, attacking procedures, and strategic knowledge. Since visuospatial 

templates are thought to lie at the core of strategic thinking, they would provide an invaluable insight into how 

experts in different fields make correct decisions in complex situations. This paper uses chess, a key domain for 

research in expertise (Charness, 1992), to show that experts identify strategic systems accurately and that 

memory templates adequately account for such performance. 

Gobet and Simon (1996b) have put forward the hypothesis that frequently-occurring openings are stored 

as templates. In the chess jargon, the term “opening” has two meanings. On the one hand, opening refers to the 

first stage of the game. On the other hand, the term refers to the strategic system used by the player (Chassy & 

Anic, 2012). The template theory refers to the second meaning. To avoid such semantic ambiguity, the author 

will use the phrase strategic system in this paper. When playing a given strategic system, pieces are developed 
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according to a set of system-dependent principles. As a result, the position of those pieces creates a typical 

pattern that varies slightly as a function of the opponent’s strategy. Templates are memory units that are suitable 

to encode such flexible, visuospatial patterns. Scholars and world-class professionals agree that the mastery of 

strategic systems plays a central role in experts’ performance (Alekhine, 1979; Capablanca, 1931; Gobet & 

Simon, 1996b; Goldin, 1978; Kasparov, 1986). In line with this view, trainers recommend that players spend 

between 25% and 50% of their training time studying strategic systems (Alburt & Chernin, 2001; Mednis, 

2002). If these ratios are applied to the amount of time necessary to reach experts’ level, 10,000 hours 

according to Ericsson, Krampe, and Tesch-Römer (1993), they yield an estimate of 2,500 to 5,000 hours spent 

in learning strategic systems. Such a colossal investment in time ensures that players have accumulated huge 

amounts of knowledge; which is precisely what makes strategic systems particularly suitable to be encoded as 

templates. The consequence of which is that strategic thinking would be underpinned mainly by sophisticated 

memory structures. 

The second part of the paper reports a human experiment where novice and expert chess players were to 

identify strategic systems; a demonstration that strategic thinking in experts is quick and efficient. The third 

part reports a neural network model of templates that simulates both novices’ and experts’ performance; hence 

showing that the ability of expert is adequately accounted for by memory processes. The discussion highlights 

the impact of the findings on the interaction between memory and high-level cognition. 

Experiment 

Rationale 

The proposal of Gobet and Simon (1996b) that strategic systems are encoded as templates calls for an 

empirical test. That strategic systems are a central feature of chess performance has been emphasized by both 

scientists (Charness, 1976, 1981; Gobet & Simon, 1996b; Goldin, 1978; Holding, 1989; McGregor & Howes, 

2002; Saariluoma, 1991, 1995), world chess champions (Alekhine, 1979; Kasparov, 1986), and chess trainers 

(Alburt & Chernin, 2001; Chassy & Anic, 2012; Mednis, 2002). Even though the importance of strategic 

systems is fully acknowledged, at the best of the author’s knowledge there is no study designed to contrast 

novices’ and experts’ ability in identifying strategic systems. Since template formation is thought to occur at an 

advanced stage of expertise acquisition, novices should not have formed templates. By contrast, experts have 

templates at their disposal to identify strategic systems. As a result, novices’ performance in recognizing 

strategic systems should be weaker than that of experts. The purpose of the experiment is twofold: (1) to show 

that experts can identify strategic systems with high levels of accuracy; and (2) to yield data for the modelling 

of templates. 

Participants 

Players were all male with a mean age of 32.37 (SD (standard deviation) = 5.60). The data were collected 

in various chess clubs of France and Spain. The Elo rating is the system used by the World Chess Federation to 

classify chess players (Elo, 2008). The cut point for expertise is 2,000 Elo. Forty chess players participated on a 

voluntary basis. The expert group consisted of 20 players with an average rating of 2,028.50 Elo (SD = 134.10 

Elo). Twenty other players were novices. The novice players were not club players and as such did not have Elo 

ratings. The experimenter, a chess expert (2,172 Elo), screened the novice players to ensure that they had a 

correct mastery of chess rules. All players were informed of the purpose of the study and of their right to 

withdraw at any time. They were also provided with the contact details of the experimenter should they wish to 
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have their data erased from the sample at any time.  

Material & Procedure 

Two sets of material were prepared. One set was designed to assess whether the players could recognize 

basic chess manoeuvres. Six positions that include basic piece manoeuvres were selected from a chess book for 

beginners (Fischer, 1966). These positions were selected to ensure that the players, both novices and experts, 

had mastered the fundamentals of chess. The second set was used to test the ability of the players to identify 

strategic systems. Seven systems1 were selected based upon experts’ classification of strategic systems 

(Matanović, Molorović, & Božić, 1971). For each strategic system, four different positions were randomly 

selected in a commercial database (Chessbase 9, 2006). In addition, four positions were selected among rarely 

used strategic systems. For all positions, the criterion for selection was that the positions arose between ply 10 

and ply 30 (where white and black have played between five and 15 times each). This is a typical measure to 

determine if a position belongs to the phase of the game wherein armies develop according to the principles 

underpinning strategic systems (Mednis, 2002). To ensure ecological validity, all positions were selected among 

games played by experts. 

To ensure that the positions were correctly assigned to one category only, they were classified by three 

different computer programs (Meyer-Kahlen, 2010; Morsch & Feist, 2010; Rajlich, 2010). The degree of 

agreement across software was 100%. The positions were randomly sorted once and put into a questionnaire. 

Next to each position, the list of possible defences was presented. Figure 1 shows one position and the choice 

offered to the player (translated from French). 
 

 
Figure 1. Example of a position to be classified. 

 

The experimental procedure consisted of two phases. In the first phase, the chess players were screened for 

their basic knowledge. The method consisted of presenting the player with the six basic positions and asking for 

a solution. Both novice and expert players completed this phase with perfect performance. In the second phase, 

chess players were handed the questionnaire containing the 32 positions and were asked to point out, for each 

position, which strategic system was used. The players were instructed to tick one box only and were given as 

much time as they needed to complete the task. Considering that participants had the choice of between eight 

responses, chance performance is defined as a performance of 12.5% (i.e., 1/8). 
                                                                 
1 The seven systems considered in this paper account for 98.9% (390, 846/395, 198) of experts’ games in reply to 1.e4 that were 
played between 2000 and 2006. 
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Behavioural Results 

For each player, the total number of correct classifications (hits) was divided by the total number of 

positions (i.e., 32) so as to yield a hit ratio, reflecting the average performance of the player. Group 

performance was then calculated for novices and experts. The group of experts (M = 92.03%, SD = 1.17%) 

performed better than chance (t(19) = 68.18, p < 0.01). Novices were less efficient in recognizing positions (M = 

11.72%, SD = 1.20%) and their performance did not depart from chance distribution (t(19) = -0.65, p < 0.52). As 

predicted, the difference in performance between the two groups was significant (t(38) = 48.05, p < 0.01).  

The chance performance of the novices, together with the significantly higher performance of the experts, 

converges towards the same conclusion: namely, those experts can recognize strategic systems by merely 

considering the distribution of pieces in a position. This result is consistent with the idea that templates are 

sophisticated memory units. The data collected were used to assess the performance of the computer model of 

templates. 

Computer Model 

ANNs (artificial neural networks) have demonstrated a high ability to detect and classify patterns 

(Behrman, Linder, Assadi, Stacey, & Backonja, 2007; Geetha, Pratibha, Ashok, & Ravindra, 2000; Gupta, 

Molfese, & Tammana, 1995; Stevens, Ikeda, Casillas, Palacio-Cayetano, & Clyman, 1999; Werbos, 1974). 

These techniques also proved to be highly efficient when applied to various fields of psychology (Geetha, 

Pratibha, Ashok, & Ravindra, 2000; Hill, Marquez, O’Connor, & Remus, 1994; Quek & Moskowitz, 2007; 

Read, Monroe, Brownstein, Yang, Chopra, & Miller, 2010; Schyns, 1991). Within cognitive psychology, ANN 

architectures are particularly suited to model perceptual and memory phenomena (Botvinick & Plaut, 2006; 

Carpenter, 1989; Chartier, Renaud, & Boukadoum, 2008; Kawamoto & Anderson, 1985; McClelland & 

Rumelhart, 1981; Norman, Neman, & Detre, 2007). In spite of its successes as a theory of expertise 

development, there have been surprisingly few attempts to provide a computer implementation of the template 

theory (Gobet et al., 2001). At the best of the author’s knowledge, there were no ANN architectures. 

Consequently, the model will be the first to model templates utilising an ANN architecture to simulate novices’ 

and experts’ ability to identify strategic systems. The purpose of the model is to demonstrate that: (1) Templates 

can be implemented in an ANN; and (2) This architecture adequately accounts for identification of strategies. 

Before moving onto the description of the model, the author would like to indicate the key findings in cognitive 

neuroscience that were used as criteria to constrain the model’s design. 

Two processes determine the percept that will access conscious recollection: template activation and 

attentional filtering. Template activation results from bottom-up processing of perceptual signals along neural 

structures that encode long-term memories; that is, recognition takes place at the actual site where information 

is stored (Chassy & Gobet, 2011a). Functional neuroimaging has shown that such recognition activates 

knowledge in the ventral path of the visual cortex (Spiridon & Kanwisher, 2002; Squire, 2004). This region has 

subparts that are particularly responsive to specific types of visual stimuli, such as faces (Kanwisher, 

McDermott, & Chun, 1997), words (Cohen & Dehaene, 2004), or cats (Haxby, Gobbini, Furey, Ishai, Schouten, 

& Pietrini, 2001). Since templates are perceptual units (Gobet et al., 2001), they are also stored in visual-related 

areas (Amidzic, Riehle, & Elbert, 2006; Campitelli, Gobet, Head, Buckley, & Parker, 2007; Guida, Gobet, 

Tardieu, & Nicolas, 2012). Learning at the neural level is mediated by neural plasticity (Kandel, 2001) ; a 

process whereby biological neural networks are gradually rewired (Alberini, 2004; Alvarez & Squire, 1994). In 
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line with this literature, one ANN in the current model will be devoted to perform both storage and recognition.  

The other process to be implemented is attentional filtering. Top-down processes, such as response 

selection, are under the control of other brain areas (Barcelo, Suwazono, & Knight, 2000). These TDC 

(top-down control) systems bias the bottom-up processing of perceptual information to match it with 

goal-directed requirements. TDC is an attentional bottleneck (Tombu, Asplund, Dux, Godwin, Martin, & 

Marois, 2011) that is adequately modelled as a filter. In brief, a competition takes place between all perceptual 

inputs to access consciousness (Desimone & Duncan, 1995); such bottom-up process is biased towards 

task-relevant information (Beck & Kastner, 2008) by TDC. The successful percept will access working memory 

and thus conscious recollection (Baddeley, 1986; Gaskell & Marslen-Wilson, 2002). Thus, in line with this 

literature, a second ANN in the current model will be devoted to implement attentional filtering. 

Architecture 

The model is termed the TEKS (templates for expert knowledge simulator). In line with the distinction 

between memory and attentional processes, TEKS is made of two modules; a long-term memory module and 

an attentional module. Figure 2 (Panel A) shows the basic structure of TEKS. The VTS (visual template store) 

plays the role of long-term memory. It will be the target of supervised learning and will also implement 

recognition by delivering the level of activation of the templates. Perceptual competition is served by the TDC 

module. The role of TDC is to act as the attentional bottleneck by forwarding to working memory the template 

that has the higher level of activation. The TDC output represents the active pointer in the frontal lobes that 

maintains the correct answer active in the posterior regions of the brain (Curtis & D’Esposito, 2003). 

When a position is presented to TEKS, processing occurs in two stages. In the first stage, the signal is 

processed in VTS wherein the input is matched against each template. VTS provides the level of activation of 

the templates as output. These levels of activation are forwarded to the TDC, the role of which is to filter out 

the less appropriate answers. 

Figure 2 (Panel B) shows the structure of the VTS. Consistent with Gobet and Simon (1996b), who put 

forward the hypothesis that one strategic system is coded as one template, the eight strategic systems will be 

coded as eight templates. The VTS is a three-layer feedforward neural network that can store up to eight 

templates. The VTS is a fully connected network: Each neuron of one layer connects to all neurons of the next 

layer. The input layer is made of 64 neurons. Each neuron codes the material content of one square of the 

chessboard. The second, hidden layer is made of 32 tan-sigmoid neurons. The output layer is made of eight 

linear neurons where each neuron codes the level of activation of one template. For example, the fifth neuron of 

the layer always codes for the “Pirc” defence. VTS takes 64-element vector as input and outputs an 8-element 

vector that reflects the degree of activation of the templates. 

The architecture of the TDC is presented in Figure 2 (Panel C). The TDC is a probabilistic neural network 

made of three layers that serve the function of selecting the most active template. There is a one-to-one 

mapping between the VTS output and the TDC input so that the VTS output vector is used as the TDC input. 

The hidden layer of the TDC is made of eight neurons with radial basis transfer function. The output layer is 

made of one single, competitive neuron. It outputs a digit (from one to eight) reflecting which input neuron was 

the more active. The output neuron represents the active neurons in the frontal lobe that maintain online the 

active representation in the posterior areas. The TDC simulates access to working memory and thus to 

conscious recollection. Consequently, the TDC output simulates the participants’ responses. 
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Figure 2. Panel A: Architecture of the TEKS model; Panel B and C: Structure of the VTS and TDC modules. 

Recoding of Chess Positions as Input Vectors 

The chess positions used for training and simulation were coded numerically. The process aimed to code both 

the type of piece and its location on the board. The coding of pieces was done by a numerical equivalence between 

the nature of a piece and an integer. The numerical code used to transcribe chess positions into numerical matrices 

is presented in Table 1. For example, a black rook was coded -4 and a white bishop was coded 3. 
 

Table 1 

Numerical Code Used to Code Pieces as Integers 

Type 
Color 

White Black 

King 6 -6 

Queen 5 -5 

Rook 4 -4 

Bishop 3 -3 

Knight 2 -2 

Pawn 1 -1 

Empty 0 

Note. An empty square was coded as zero. 
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Figure 3. Numerical code used to code positions as numerical vectors. 

 

Figure 3 (Panel A) shows the spatial mapping used to code a chess position (i.e., 8×8 matrix) as a 

TEKS-compatible input vector (i.e., 64 values in a one-dimensional vector). A one-to-one mapping between 

each chessboard square and a position in the input vector was used to ensure that any given slot of the 

one-dimensional vector always coded for the content of the same square across positions. Squares were 

processed one after another from left to right. Rows of the position were processed one after another from top 

to bottom. Panel B shows an example of the coding procedure. In the first phase, the 64 squares had their 

content recoded in an 8×8 matrix. Consider for instance the black bishop in square c8 (top row, third square), 

which was coded as -3 (see the matrix), or the white knight standing in g1 (bottom row, seventh square), which 

was coded as 2. In the second phase, the matrix was rearranged as a 64-element vector. This mapping technique 

was used because it enabled encoding chess positions numerically while maintaining the topological 

relationships between the pieces. 

Simulation Cycle 

TEKS has two operational modes: learning and simulation. The simulation cycle corresponds to the total 

of operations that are carried out by TEKS from the input in VTS to the output of TDC. Figure 4 shows the 

detailed structure of the VTS module. The input vector (considered as the perceptual signal) is processed four 

times within the VTS module. Firstly, it is weighted between the input and hidden layers. Secondly, hidden 

neurons process the signal by applying the tan-sigmoid transfer function. The signal is then weighted between 

the hidden and output layers. Finally, the signal is linearly processed by the output neurons. As a result, the 

VTS module has determined to which level the input signal activates each memory template. 
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Figure 4. Detailed architecture of the VTS module. 

 

The levels of activity serve as input to the TDC module. It will process the signal in three steps (See 

Figure 5 for the detailed structure of TDC): weighting, radial basis transformation (hidden layer), and 

competition. The output of the competitive neuron represents the template that accesses consciousness. If the 

identified template is the correct one then TEKS scores a hit (1); if it is incorrect TEKS scores a fail (0). To 

compare with human performance, TEKS was simulated with the 32 test positions used in the behavioural 

experiment. The 32 responses from TEKS were recorded and the hit ratio was calculated. 
 

 
Figure 5. Detailed architecture of the TDC module. 

Training Cycle 

The learning mode refers to the storage of the templates in long-term memory. In TEKS, learning takes 

place in the VTS module. To learn, an ANN modifies the weights until it is able to provide an output vector that 

matches the training values. This objective is attained by gradually reducing the difference between the actual 

and expected outputs. In this paper, supervised learning was performed with the Levenberg-Marquardt 

algorithm (Levenberg, 1944; Marquardt, 1963), which had been successful in training feedforward networks in 

various fields of research (Adeloye & Munari, 2006; Fun & Hagan, 1996; Kermani, Schiffman, & Nagle, 2005; 
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Übeyli, 2009). The mathematical details of the algorithm might not always be consistent with neurobiological 

findings of mechanisms occurring at the molecular level (Kandel, 2001). However, its use in a network makes 

sense at the brain map level since real networks storing memories are also restructured progressively 

(Broadbent, Squire, & Clark, 2004; Squire, 2004; Squire & Zola-Morgan, 1991). The cycle of presenting an 

input vector, calculating the output and adjusting the weight matrix, is termed an epoch. The correction of the 

weights is gradual and so learning requires several epochs. It is essential to note that the set of positions used to 

train TEKS was different from the set used to test its performance. 

Procedure 

To simulate a novice player the network was initialized by assigning random values to the weight matrix 

of VTS. Then the novice TEKS was simulated with the 32 test positions from the experiment and the hit ratio 

was computed. To simulate 20 novices the procedure was repeated 20 times. 

The procedure for the simulation of an expert consisted in three phases. In the initialization phase, the 

matrix weight of VTS was randomized. In the training phase, VTS was trained with a set of 128 positions 

(made of 16 positions per strategic system). All the training positions differed from the 32 test positions used in 

the behavioural experiment. Two hundred epochs were run for the training phase and only the networks scoring 

more than 80% with the training set were retained. In the last phase, TEKS was simulated with the 32 test 

positions and the hit ratio was calculated. The procedure was repeated to simulate 20 experts. 

All of the simulations were run using the MATLAB® (Mathworks Inc.) environment supplemented with 

the Neural Network Toolbox (Demuth, Beale, & Hagan, 2009).  

Results 

Figure 6 shows the performance for the participants and for TEKS. The performance of TEKS (M = 

12.19%, SD = 4.85%) when simulating novices did not differ significantly from human novices’ performance 

(t(38) = 0.29, p = 0.77). Similarly, after training, TEKS performance (M = 93.13%, SD = 1.92%) did not differ 

significantly from the performance of human experts (t(38) = 0.88, p = 0.38). Furthermore, the simulated experts 

classified the positions significantly better than the simulated novices (t(38) = 69.36, p < 0.01), thereby 

replicating the results of experts and novices in the first study.  
 

 
Figure 6. Performance of participants and of TEKS at identifying strategies. Error bars represent SDs (n = 40). 
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Discussion 

The present paper aimed to evaluate the theoretical foundations of Gobet and Simon’s (1996b) assumption 

that memory templates underpin strategic thinking. The behavioural experiment has brought conclusive 

evidence that experts perform strategy identification better than novices do. The simulations have shown that 

novices’ and experts’ performance are both accounted for by the recognition of flexible memory templates. The 

results are thus supporting Gobet and Simon’s (1996b) hypothesis.  

Though it may appear trivial that novices do not perform better than chance, it has several implications. 

First, the assumption that novices cannot recognise strategic systems, although it is an assumption of the 

template theory, has never been tested and finds here its first empirical supportive evidence. Second, the fact 

that novices with knowledge of the rules of the game and of basic tactical procedures do not recognise strategic 

systems is in line with the idea that templates evolve in advanced stages of expertise acquisition. Finally, the 

baseline level of performance that is to be reached by a psychologically valid model is chance performance (i.e., 

novices’ average performance). By contrast, experts have performed with high accuracy, supporting the view 

that they have reorganized chess knowledge into complex templates. The results are in line with previous 

findings regarding the template theory (Campitelli, Gobet, Head, Buckley, & Parker, 2007; De Groot & Gobet, 

1996; Gobet, 2003; Gobet & Simon, 1996a, 1996b, 2000; Lane, Cheng, & Gobet, 2000). In addition, the fact 

that variability in piece distribution within a given strategic system does not impair performance suggests that 

templates help experts to overcome visual complexity. 

The new, modular neural network architecture termed TEKS successfully models the storage of templates 

and simulates both novices’ and experts’ ability to identify strategic systems. TEKS simulations suggest that 

novices’ lack of knowledge can be conceptualized as a network with random connections. Also, the fact that 

TEKS was able to simulate experts’ performance shows that experts’ responses in a complex task (i.e., 

identifying strategic systems) are adequately accounted for by an artificial neural network model of memory. 

The performance of TEKS and human agents in the identification task provides the strongest evidence to date 

that experts’ strategic knowledge is encoded in memory templates. 

The findings have also opened the door for new empirical and computational avenues. Since strategic 

thinking is an essential aspect of experts’ performance both in chess (Alekhine, 1979; Capablanca, 1931; 

Chassy & Anic, 2012; Hellsten, 2010; Pachman, 1972) and in other domains (e.g., Liao, 2008), the recognition 

of strategic systems, or of strategic features, provides a basis to link memory mechanisms to high-level 

cognition. Hence, the findings of the present experiment bridge a gap between the research on expertise 

concerned with low-level processes (e.g., perceptual, Ferrari, Didierjean, & Marmèche, 2006; Simon & Chase, 

1973; counting, Saariluoma, 1995; and memory, Gobet, 2003; Gobet & Waters, 2003; Saariluoma & Laine, 

2001) and the research concerned with high-level processes such as forward planning (Holding & Pfau, 1985), 

decision-making (Campitelli & Gobet, 2004), judgment (Holding, 1979), and intuition (Chassy & Gobet, 2011a; 

De Groot, 1986). 

The strength of the results is moderated by the fact that a restricted sample of positions was used for the 

classification. Unlike machines, human experts accumulate fatigue over trials. To limit the cognitive demand, 

the amount of material was limited to 32 positions. Research is required to further examine the discriminative 

capacity of experts with a wider range of strategic systems. The second limitation relates to the definition of 

expertise. Chassy (2009) had shown that chess experts display some variability in the quality of their decisions 
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and had suggested to distinguish several subclasses of experts; a view that received further support by research 

on rote memory of sequences (Chassy & Gobet, 2011b). Considering that the experts that were recruited were 

not of the highest possible standard (world-class players) the performance attained in the present experiment 

might not reflect the maximum performance that experts can attain. Future research might address these 

limitations by testing players that span several classes of expertise and by including more strategic systems.  

The main findings of this study shed a new light on the role of memory in experts’ performance. As the 

behavioural data indicate, expert chess players are able to identify chess strategies by merely attending to a 

position. This finding supports the template view of strategic thinking. The first neural network model of the 

template theory has adequately modelled novices’ and experts’ behaviour in a strategic identification task. That 

human data could be accounted for by a neural network model-based architecture lends credence to the notion 

that memory lies at the core of strategic thinking. The next objective is to show how this system supports 

intuitive judgment. 
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