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Abstract: A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending
up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to
results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm x 120 mm, geometrical
reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was
the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the
evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by
the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and
bending.
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1. Introduction to iteration between internal forces and displacements

) ) due to load, lead to simplified or iterative solutions.
Reinforced concrete columns are important ) . .
) ) Knowing the behavior of columns under combined
structural elements, which, in a standard structure of . . . o
o ) ] ) ) axial load and bending during loads steps until failure
building, have main function of supporting horizontal . . e
. . is very important, mainly in slender columns, where the
and vertical loads, transmitting these loads to o .
. second order effects are significant. Experimental
foundations. . . o
] ) studies are difficult to be done, and it is necessary to
With the advent of the computers and high . . )
resort a cross section reduction of the column in order
performance concretes, concrete structures became . . .
. to avoid costs with frame tests and equipment, and
slenderer, with Dbetter use of concrete and . . .
. consequently becoming a medium proportion test.
reinforcement strength. Among the consequences of . ) )
) ] o Having a numerical model to analyze reinforced
that technological advance, there is great likeliness to . .
o ) . concrete columns under combined axial load and
reach a limit state of instability of the columns. L .
. . bending is important to predict, to analyze test results
The complexity of study of reinforced concrete )
) o ] and to design columns.
elements under axial load and bending is due to its . .
) ) ) ) ) A nonlinear numerical model was developed based
nonlinear behavior. The physical nonlinearity due to ) )
) ] o on work presented by Nagato [1], which considers
reinforced concrete and reinforcement constitutive . . .
) ] ) ) ] compression field theory given by Vecchio and
nonlinear equations, the geometrical nonlinearity due ) .
Collins [2]. The developed numerical model, called
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numerical and experimental tests, reinforced and prestressed
concrete structures.
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2. Experimental Program

Ten  reinforced concrete  columns  with
250 mm x 120 mm in cross section (area of cross
section 4. equals to 300 cm’) and concrete
compression strength around 40 MPa with 3,000 mm
in length were tested.

The longitudinal reinforcement consisted of six
10-mm diameter bars (where 4; is the area of six bars).
The longitudinal steel ratio p; is equal to 1.57 and the
slenderness A4 is equal to 90.9. The transversal
reinforcement consisted of 5-mm diameter rectangle
stirrups, with 5 mm of diameter and 100 mm of spacing.
Near to column ends the stirrups were 50 mm spaced.

All these data were based on Refs. [3-6].
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Fig. 1 Geometry details of concrete columns (units in mm).

2020

Geometry details of columns ends were used to
measure rotations of columns ends and provide
application of the eccentric load.

The main variable of tests was load eccentricity.
Fig. 1 shows the columns sizes used in present work
in mm.

The columns were identified by the following
notation: PFN e-L, where, PFN = column under axial
load and bending, e = load eccentricity in direction of
less dimension of cross section (mm) and L = column
length (m). Table 1 shows a summary of characteristics
of columns. Further details about test data can be found
in Refs. 3, 4, 7].

Each longitudinal bar and concrete compressed
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Table 1 Data for tested columns.

Column e (mm) A L (mm) A, (cm?) A, (cm?) ps (%)
PFN0-3 0
PFN 6-3 6
PFN 12-3 12
PFN 15-3 15
PFN 18-3 18
90.9 3,000 300 4.71 1.57
PFN 24-3 24
PFN 30-3 30
PFN 40-3 40
PFN 50-3 50
PFN 60-3 60

*Considered 3,140 mm between pins.

EC1 some cases, recommendations by Ref. [8] were used.
!1 2 ! Reinforcement strength was obtained by pull-out test.
The concrete cylinder strength varied from 33.9 MPa
c .e e | T EC2 .e o to 39.7 MPa. Table 2 shows experimental results of
3 4 concrete and steel.
5 6
o ® EC3j o o
(a) (b)

Fig. 2 Placement of strain gauges on: (a) reinforcement; (b)

concrete surface.

Concrete compression strength was obtained by Reaction slab

compression test, and tensile strength was obtained

surface were monitored at mid-height using strain (L:gﬁ‘d_’
gauges. The compressed surface is called C-face and Jnck Roller
the least compressed surface (or tensioned face) is i /
. ) [ D2Y ¥os |
called T-face. Fig. 2 shows the placement of strain
gauges on reinforcement and concrete surface at l\
middle height.
D7
The columns were tested using a steel reaction frame, ——
where the load was applied using a jack until column D6
—
failure and measured using a load cell. The load o
eccentricity was applied moving the center of the plates
from each column axe. Fig. 3 shows the test setup used D1 D4
with positioning of load cell, jack, rollers, column and
electric deflections gauges (D1 to D7). e phii é
3. Materials Tests Concrete ‘ ‘
ock
|

Fig. 3 Test setup for reinforced concrete columns under
modulus was obtained by tests of specimens, and in compression.

from the indirect tensile test (Brazilian test). The elastic
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Table 2 Experimental results of concrete and steel.

Column /. (MPa) for (MPa) E.(GPa) f,” (MPa) 7" (MPa) E,’ (GPa)
PFN 0-3 35.8 3.1 28.7

PFN 6-3 39.6 2.5 32.1

PFN 12-3 39.6 25 32.1

PFN 15-3 35.8 3.1 28.7

PFN 18-3 39.7 24 30.6 595 705 19
PFN 24-3 39.7 2.4 30.6

PFN 30-3 33.9 3.3 31.5

PFN 40-3 33.9 3.3 31.5

PFN 50-3 37.6 3.1 31.1

PFN 60-3 37.6 3.1 31.1

"tests results of same lot of material;

/. is the highest compressed concrete stress;
[« 1s the highest tensile concrete stress;

Jy s the tensile yield steel strength;

f. 1s the ultimate tensile steel strength;

E; is the steel modulus of elasticity;

E._ is the concrete modulus of elasticity.

4. Numerical Model

In order to simulate the columns behavior subjected
to combine axial load and bending, a computing
program was used, which was developed using Fortran
compiler. The numerical model, called FLECO2C,
simulates the same tests conditions, applying load in
steps until failure. FLECO2C is divided in two parts: a
nonlinear physical model, which considers the physical
nonlinearities of concrete and reinforcement, and a
nonlinear geometric model, which uses the results
obtained on nonlinear physical model to calculate the

horizontal displacements.
4.1 Consideration of Physical Nonlinearity

The consideration of physical nonlinearity of
numerical model was presented by Nagato and
Regis [9] and the program was called CACODI. The
CACODI program was made using Fortran 77
compiler and the aim was the study of shear resistance
of reinforced concrete elements under axial load and
bending with different longitudinal reinforcement
ratios.

The model is based on compression field theory by
Vecchio and Collins [2], which developed a computing
program that applies the theory called SMAL (shear

and moment under axial load).

For the compressed concrete behavior, the
stress-strain law proposed by Carreira and Chu [10]
was adopted:

o = fcﬂ(ge/go)
B —(&./&, )ﬂ
1

L @
Ec‘go

(1

where, o is the compressed concrete stress; f. is the
highest compressed concrete stress; £ is the material
parameter; & is the compressed concrete strain; & is
the strain corresponding to the highest compressed
concrete strain; £y is the initial elasticity modulus of
concrete.

The variable CT (concrete type) was used in main
program to choose the concrete behavior with
descendent line or without descendent line (Fig. 4).
This law is valid to g < & < 0 to concrete with
descendent line (CT = 1), or & < & < 0 to concrete
without descendent line (CT = 2), which o. = f,
& < & < 0 (Fig. 4). All analyses were done using
concrete with descendent line (CT = 1), and the
concrete without descendent line was disposed for
design purposes.

For the tensioned concrete behavior, a similar law
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used by Maia [11] was adopted, but the tension
strength of concrete used was defined by Vecchio and
Collins [2] (Fig. 5):

0. = Eoe; for < &, 3)

2
E —€
o, =1, (Lj for g, < g<g, 4)

guz _gcr
o= 0 for &> &, (5)
£, =033/f (MPa) (6)
&er=ful Eo (7)

where, o, is the tensile concrete stress; f.. is the
cracking tensile concrete stress; ¢is the tensile concrete
strain; &, is the highest tensile concrete strain; &, is the
strain corresponding to the highest tensile concrete

oA

)

&o &y

Fig. 4 Stress-strain diagram of compressed concrete.

O A

Jer

>
Eut

Fig. 5 Stress-strain diagram of tensile concrete.

strain; Ej is the initial elasticity modulus of concrete.

The highest tensile concrete strain &, =5 x 10~ on
CACODI program was adopted because it leads to
adjust results with experimental results presented by
Vecchio [12].

A bilinear behavior was adopted to longitudinal steel
bars (Fig. 6), assuming that stress-strain diagram is
valid to compression and tension.

The reinforcement stress was obtained by:

o, = Ese,when g, < g <, (8)

o, =4f, when §,> &> ¢, )

where, o is the steel stress; E is the steel modulus of
elasticity; & is the steel strain; £, is the tensile yield steel
strength; &, is the is the yield tensile steel strain and &,

is the highest tensile steel strain.
4.2 Calculation Process

The rectangular cross section, given by b and 4, was
discretized in “m” concrete layers and “n” reinforced
layers, where each concrete layer has width b;, height #;
and position in relation to the highest cross section
compressed fiber (y.;), and each reinforced layer has
the area of longitudinal steel (4,;) and position in
relation to the highest cross section compressed fiber
(v (Fig. 7).

After changing the neutral axis deep and curvature, it
was possible to determine in each concrete layer strain

(&c11), stress (o), concrete load (F.;), transversal loads

[ F 3

e

-

gy Esu &

Fig. 6 Stress-strain diagram of longitudinal bars (CA-50).
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Fig. 7 Cross section discretization.

(0vi) and in each reinforced layer strain (ey), stress (o)
and reinforced load (F).

The following hypotheses were considered on
CACODI program:

* Bernoulli hypothesis that means the plane
sections remain plane until failure;

* equilibrium condition that means the internal
forces balance external forces.

Given these hypotheses, it is possible to reach the

cross section equilibrium by the following equations:

N=Yc.,bh+) 0,4, (10)
i=1 J=1

M= 0,bh(,~)+D 0,4,(,~h) (11)
i=1

Jj=1
V=>1.bh, (12)
i=1

where, N is the axial force, M is the bending moment
and V is the shear force.

The first summation of Eq. (10) determines the
internal concrete resultant (RC) and the second one
determines the internal reinforcement resultant (RS). In
Eq. (11), the first and the second summations
determine the internal bending moment related to
internal concrete resultant (MC) and related to internal

reinforcement resultant (MS), respectively. In Eq. (12),
the summation determines the internal concrete
resultant by the compression field theory.

The curvature of the cross section is determined by
neutral axis variation until equilibrium of internal
forces is satisfied. The calculus is processed by
iteration.

It is important to emphasize that it is possible to
ignore the shear load in the program, and in this work,

the shear load was ignored.
4.3 Consideration of Geometric Nonlinearity

The CACODI program analyses an isolated cross
section under axial load, shear load and bending, and it
does not apply directly to second order effects, which
occur in columns under axial load and bending, yet
these results can be used to do that analysis.

In order to determine the second order effects in a
column under axial load and bending, a subroutine,
called SECORDER, was
moment-area theorem.

developed, using the

Half of the column was divided in cross sections (s),
and in each load step the main program analyses each
cross section (s) subjected to axial load (N) and
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bending (M), given by the following Eq. (13):
M;=N-(e+di-1,5) (13)
where, e is the initial eccentricity, d - 1, 5 is the column
horizontal displacement of section (s) determined on
the previous iteration (i — 1).
The main program determines the curvature for each
section (PHI) and the SECORDER subroutine converts
these curvatures

into displacements, using the

moment-area theorem (Fig. 8). The new displacements

load steps until failure are presented and compared
with numerical program results (Fig. 9).

It can be noticed that the concrete strains predicted
by the numerical model presents close results of
concrete strains for nearly all cases. The seen-far
behaviors were given by PFN 12-3, PFN 18-3 and
PFN 24-3 columns, probably due to high geometric

imperfections or due to incorrect load eccentricity.

are used to calculate the new bending moments, which - % PHI(1)
are introduced in the main program again until they d(1)
reach an established tolerance given by the user. 42) PHI(2)
. . . — PHI (3
5. Comparison of Test Data with Numerical 4o NPHE(E‘)
Model Results N CAC) \
PHI (5)
LIS APH1 (©6)
On this topic, the results obtained on tests are } < e 4 | PHI(7)
compared with FLECO2C estimates. Initially, concrete
strain and horizontal displacements at mid-height of
columns are presented, during load steps until failure
and finally the ultimate loads of columns.
5.1 Concrete Strains
Concrete average strains at a more compressed - @ — -
surface located at mid-height of columns during the Fig. 8 Column discretization.
| .
| —e—PFNG6-3
| | ——PFN6:3 (FLECO20) v\ow"‘(’
—tr— PFN 12-3
|| —— PFN 12-3 (FLECO2C)
| | —s~PFN 153 e, B
—8— PFN 15-3 (FLECO2C)
| | —e—PFN183 >;<>
| —e— PFN 18-3 (FLECO2C) s
| | =< PFN243 3
—%— PFN 24-3 (FLECO2C) g
| ——PFN30-3 z
| | —— PFN30-3 (FLECO2C) — ~
= PFN 40-3 AT
| | —% PFN40-3 (FLECO2C)
— =—@—PFN50-3 -— %
|| —8— PFN 50-3 (FLECO2C) o -
—&— PFN 60-3
[—| —e— PFN60-3 (FLECO2C)
[ X
—3,500 —3,000 —2,500 —2,000 —1,500 —1,000 —500 0

Strain (x 107%)

Fig. 9 Concrete strains at mid-height.
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5.2 Horizontal Displacements

Horizontal displacements at mid-height of columns
during the load steps until failure are presented and
compared with numerical model results (Fig. 10).

It can be seen that the horizontal displacements
predicted by the numerical model presents close results
of horizontal displacements for almost all cases.
Column PFN 24-3 presented far results, probably due
to high geometric imperfections or due to incorrect
load eccentricity. It was necessary to retest PFN 24-3
column to validate the results.

5.3 Ultimate Loads

With FLECO2C, it was possible to estimate the

ultimate load of each column. The horizontal
displacements were incremented in each load step until
the column failure.

The ultimate load was determined when it was not
possible to balance the external load with the cross
section internal load. Table 3 shows a comparison
between numerical loads and ultimate loads with

statistic results, and Fig. 11 shows F,/F,,, plotted

against relative eccentricity e/A.

As shown in Table 3 and Fig. 11, the ultimate loads
predicted by the numerical model presents close results
for nearly all cases, except for PFN 18-3, PFN 24-3
and PFN 30-3.

6. Analysis of Numerical Results

On this topic, an analysis is presented between
results obtained on a numerical model and obtained on
tests. The whole analysis was done using applied load
eccentricity, considered at cross section center of
gravity, and geometric imperfections were not
considered.

An accurate concrete strain estimate and horizontal
displacements on PFN 6-3 column results can be seen
in Figs. 9 and 10, when compared with FLECO2C
results. The displacement curve estimated by
FLECO2C presented an adequate approximation when
compared with test results, presenting greater stiffness
and ultimate load 4% greater than the test result.
Probably, the real eccentricity of column was greater

than the one used on the numerical model.

70 [
650 —— PFN 63 =
—e— PFN 6-3 (FLECO2C)
600
A= PFN 12-3
550 —&— PFN 12-3 (FLECO2C) [ |
—_ X
500 PFN 153 ||
—&- PFN 15-3 (FLECO2C)
450 —e= PFN 183 ]
—
Z 400 —o— PFN 18-3 (FLECO2C) |
= — PFN 243
3 350 -
s —— PFN 24-3 (FLECO2C)
= 300 —— PFN 30-3 =
>
—+ PFN 30-3 (FLECO2C
< 250 ( )
b = PFN 403
200 _s— PFN 40-3 (FLECO2C) [
150 —e— PFN50-3 ||
- . —e— PFN 50-3 (FLECO2C)
100 —e— PFN 60-3 N
50 —e— PFN60-3 (FLECO2C) ||
0 : T T T

25 30

35 40 45 50 55 60 65 70

Displacement at mid-height (mm)

Fig. 10 Horizontal displacements at mid-height.
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Table 3 Ultimate loads versus numerical loads.

Column F, (kN) Foum (KN) FJFum Mean Standard deviation Coefficient of variation (%)
PFN 0-3 1,053.0 980.0 1.07
PFN 6-3 652.0 680.0 0.96
PFN 12-3 535.0 530.0 1.01
PFN 15-3 446.5 430.0 1.04
PFN 18-3 460.5 410.0 1.12
1.01 0.10 10.2

PFN 24-3 241.0 320.0 0.75
PFN 30-3 254.8 230.0 1.11
PFN 40-3 170.2 170.0 1.00
PFN 50-3 155.0 150.0 1.03
PFN 60-3 131.0 130.0 1.01

1.20

2 - .
|
1.00 | . ] _ n
|
0.80
|
S
& 060
R

0.40

0.20

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60
e/h

Fig. 11 F,/F,,, plotted against relative eccentricity e/h.

It is possible to see a fragile behavior of columns
with eccentricity less or equal to 18 mm, given by
PFN 6-3, PFN 12-3, PFN 15-3 and PFN 18-3. All the
others presented an asymptotic tendency of curve and
were more frequently verified in columns with high
eccentricity, on PFN 50-3 and PFN 60-3, as expected
and obtained on numerical results.

The PFN 12-3 column presented a close behavior of
horizontal displacements and ultimate load prediction,
as can be seen in Fig. 10 and Table 3, respectively. The
concrete strain obtained on the numerical model
presented far results from the test of PFN 12-3 column,
probably due to problems on strain gauges, as can be

seen in Fig. 9.

The PFN 15-3 column presented adequate predicted
results of concrete strain and horizontal behavior, in
comparison with test results, as can be seen in
Figs. 9 and 10. Better results could be given reducing
the load step on test.

Figs. 9 and 10 point out far results of horizontal
displacements and concrete strains on PFN 18-3 and
PFN 24-3 column compared to FLECO2C results. The
displacement curve estimated by FLECO2C presented
lower stiffness on PFN 18-3 results and higher stiffness
on PFN 24-3 results. Results of ultimate loads given by
the numerical model presented 12% less than PFN 18-3
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ultimate load and 15% greater than PFN 24-3 ultimate
load. Probably, the real eccentricity of column was
different than the one used on the numerical model or
geometric imperfections affected those results. It is
necessary to retest PFN 24-3 column to best validate
the results.

Numerical results from PFN 30-3, PFN 40-3,
PFN 50-3 and PFN 60-3 presented close concrete
strain results and horizontal displacements when
compared with test results, as can be seen in Figs. 9
and 10, evidencing a preponderance of bending
moments on columns and presenting an asymptotic
curve with tendency of instability of columns. Ultimate
loads were very close with numerical loads predictions,
except for PFN 30-3 that presented ultimate load, given

by the numerical model, 11% less than the test result.
7. Conclusions

The aim of this work was the development for a
numerical study of reinforced concrete columns
subjected to axial load and bending. The following
conclusions are presented and about 10 columns are
tested.

The FLECO2C program presented adequate results
of ultimate loads, concrete strains and horizontal
displacements in comparison with test results,
presenting coherent results and close to the test results
with a few exceptions.

All columns presented ratios of F,/F,,, close to 1.00,
with exception to PFN 18-3, PFN 24-3 and PFN 30-3,
which probably had problems on geometric of columns
or load eccentricity.

The best results were achieved in columns with
relative eccentricity e/h higher or equal to 0.25
(e = 30 mm), evidencing difficulties in applying
eccentricities lower than 30 mm.

It is noteworthy that, at ultimate load, it is hard to
obtain horizontal displacements and concrete strains
because, at this moment, in some cases, the values
increase indefinitely. Therefore, the test behavior is

valid at close of ultimate load, mainly for columns with

high eccentricity.

Factors, such as bonding of strain gauges, geometric
imperfections of cross sections, test setup and handling
of columns, may have affected some results.
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