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Abstract: A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending 
up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to 
results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical 
reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was 
the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the 
evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by 
the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and 
bending. 
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1. Introduction  

Reinforced concrete columns are important 
structural elements, which, in a standard structure of 
building, have main function of supporting horizontal 
and vertical loads, transmitting these loads to 
foundations.  

With the advent of the computers and high 
performance concretes, concrete structures became 
slenderer, with better use of concrete and 
reinforcement strength. Among the consequences of 
that technological advance, there is great likeliness to 
reach a limit state of instability of the columns. 

The complexity of study of reinforced concrete 
elements under axial load and bending is due to its 
nonlinear behavior. The physical nonlinearity due to 
reinforced concrete and reinforcement constitutive 
nonlinear equations, the geometrical nonlinearity due 
                                                           

Corresponding author: Carlos Eduardo Luna de Melo, 
Ph.D., professor, research fields: structural engineering, 
numerical and experimental tests, reinforced and prestressed 
concrete structures.  

to iteration between internal forces and displacements 
due to load, lead to simplified or iterative solutions. 

Knowing the behavior of columns under combined 
axial load and bending during loads steps until failure 
is very important, mainly in slender columns, where the 
second order effects are significant. Experimental 
studies are difficult to be done, and it is necessary to 
resort a cross section reduction of the column in order 
to avoid costs with frame tests and equipment, and 
consequently becoming a medium proportion test. 

Having a numerical model to analyze reinforced 
concrete columns under combined axial load and 
bending is important to predict, to analyze test results 
and to design columns. 

A nonlinear numerical model was developed based 
on work presented by Nagato [1], which considers 
compression field theory given by Vecchio and  
Collins [2]. The developed numerical model, called 
“FLECO2C”, considers physical and geometrical 
nonlinearities. 
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Table 2  Experimental results of concrete and steel.  

Column fc (MPa) fct (MPa) Ec (GPa) fy
* (MPa) fu

* (MPa) Es
* (GPa) 

PFN 0-3 35.8 3.1 28.7 

595 705 190 

PFN 6-3 39.6 2.5 32.1 
PFN 12-3 39.6 2.5 32.1 
PFN 15-3 35.8 3.1 28.7 
PFN 18-3 39.7 2.4 30.6 
PFN 24-3 39.7 2.4 30.6 
PFN 30-3 33.9 3.3 31.5 
PFN 40-3 33.9 3.3 31.5 
PFN 50-3 37.6 3.1 31.1 
PFN 60-3 37.6 3.1 31.1 
*tests results of same lot of material; 
fc is the highest compressed concrete stress; 
fct is the highest tensile concrete stress; 
fy is the tensile yield steel strength; 
fu is the ultimate tensile steel strength; 
Es is the steel modulus of elasticity; 
Ec is the concrete modulus of elasticity. 
 

4. Numerical Model 

In order to simulate the columns behavior subjected 
to combine axial load and bending, a computing 
program was used, which was developed using Fortran 
compiler. The numerical model, called FLECO2C, 
simulates the same tests conditions, applying load in 
steps until failure. FLECO2C is divided in two parts: a 
nonlinear physical model, which considers the physical 
nonlinearities of concrete and reinforcement, and a 
nonlinear geometric model, which uses the results 
obtained on nonlinear physical model to calculate the 
horizontal displacements. 

4.1 Consideration of Physical Nonlinearity 

The consideration of physical nonlinearity of 
numerical model was presented by Nagato and   
Regis [9] and the program was called CACODI. The 
CACODI program was made using Fortran 77 
compiler and the aim was the study of shear resistance 
of reinforced concrete elements under axial load and 
bending with different longitudinal reinforcement 
ratios. 

The model is based on compression field theory by 
Vecchio and Collins [2], which developed a computing 
program that applies the theory called SMAL (shear 

and moment under axial load). 
For the compressed concrete behavior, the 

stress-strain law proposed by Carreira and Chu [10] 
was adopted: 
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where, c is the compressed concrete stress; fc is the 
highest compressed concrete stress; β is the material 
parameter; c is the compressed concrete strain; 0 is 
the strain corresponding to the highest compressed 
concrete strain; E0 is the initial elasticity modulus of 
concrete. 

The variable CT (concrete type) was used in main 
program to choose the concrete behavior with 
descendent line or without descendent line (Fig. 4). 
This law is valid to u ≤ c ≤ 0 to concrete with 
descendent line (CT = 1), or 0 ≤ c ≤ 0 to concrete 
without descendent line (CT = 2), which σc = fc,      
u ≤ c ≤ 0 (Fig. 4). All analyses were done using 
concrete with descendent line (CT = 1), and the 
concrete without descendent line was disposed for 
design purposes. 

For the tensioned concrete behavior, a similar law 
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bending (M), given by the following Eq. (13): 
Ms = N·(e + δ(i − 1, s))           (13) 

where, e is the initial eccentricity, δ(i − 1, s) is the column 
horizontal displacement of section (s) determined on 
the previous iteration (i − 1). 

The main program determines the curvature for each 
section (PHI) and the SECORDER subroutine converts 
these curvatures into displacements, using the 
moment-area theorem (Fig. 8). The new displacements 
are used to calculate the new bending moments, which 
are introduced in the main program again until they 
reach an established tolerance given by the user.  

5. Comparison of Test Data with Numerical 
Model Results 

On this topic, the results obtained on tests are 
compared with FLECO2C estimates. Initially, concrete 
strain and horizontal displacements at mid-height of 
columns are presented, during load steps until failure 
and finally the ultimate loads of columns. 

5.1 Concrete Strains 

Concrete average strains at a more compressed 
surface located at mid-height of columns during the 

load steps until failure are presented and compared 
with numerical program results (Fig. 9).  

It can be noticed that the concrete strains predicted 
by the numerical model presents close results of 
concrete strains for nearly all cases. The seen-far 
behaviors were given by PFN 12-3, PFN 18-3 and  
PFN 24-3 columns, probably due to high geometric 
imperfections or due to incorrect load eccentricity. 
 

 
Fig. 8  Column discretization.  

 

 
Fig. 9  Concrete strains at mid-height.  
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5.2 Horizontal Displacements 

Horizontal displacements at mid-height of columns 
during the load steps until failure are presented and 
compared with numerical model results (Fig. 10).  

It can be seen that the horizontal displacements 
predicted by the numerical model presents close results 
of horizontal displacements for almost all cases. 
Column PFN 24-3 presented far results, probably due 
to high geometric imperfections or due to incorrect 
load eccentricity. It was necessary to retest PFN 24-3 
column to validate the results.  

5.3 Ultimate Loads 

With FLECO2C, it was possible to estimate the 
ultimate load of each column. The horizontal 
displacements were incremented in each load step until 
the column failure.  

The ultimate load was determined when it was not 
possible to balance the external load with the cross 
section internal load. Table 3 shows a comparison 
between numerical loads and ultimate loads with 
statistic results, and Fig. 11 shows Fu/Fnum plotted 

against relative eccentricity e/h. 
As shown in Table 3 and Fig. 11, the ultimate loads 

predicted by the numerical model presents close results 
for nearly all cases, except for PFN 18-3, PFN 24-3 
and PFN 30-3. 

6. Analysis of Numerical Results  

On this topic, an analysis is presented between 
results obtained on a numerical model and obtained on 
tests. The whole analysis was done using applied load 
eccentricity, considered at cross section center of 
gravity, and geometric imperfections were not 
considered. 

An accurate concrete strain estimate and horizontal 
displacements on PFN 6-3 column results can be seen 
in Figs. 9 and 10, when compared with FLECO2C 
results. The displacement curve estimated by 
FLECO2C presented an adequate approximation when 
compared with test results, presenting greater stiffness 
and ultimate load 4% greater than the test result. 
Probably, the real eccentricity of column was greater 
than the one used on the numerical model. 

 

 
Fig. 10  Horizontal displacements at mid-height.  
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ultimate load and 15% greater than PFN 24-3 ultimate 
load. Probably, the real eccentricity of column was 
different than the one used on the numerical model or 
geometric imperfections affected those results. It is 
necessary to retest PFN 24-3 column to best validate 
the results. 

Numerical results from PFN 30-3, PFN 40-3,   
PFN 50-3 and PFN 60-3 presented close concrete 
strain results and horizontal displacements when 
compared with test results, as can be seen in Figs. 9 
and 10, evidencing a preponderance of bending 
moments on columns and presenting an asymptotic 
curve with tendency of instability of columns. Ultimate 
loads were very close with numerical loads predictions, 
except for PFN 30-3 that presented ultimate load, given 
by the numerical model, 11% less than the test result.  

7. Conclusions 

The aim of this work was the development for a 
numerical study of reinforced concrete columns 
subjected to axial load and bending. The following 
conclusions are presented and about 10 columns are 
tested. 

The FLECO2C program presented adequate results 
of ultimate loads, concrete strains and horizontal 
displacements in comparison with test results, 
presenting coherent results and close to the test results 
with a few exceptions.  

All columns presented ratios of Fu/Fnum close to 1.00, 
with exception to PFN 18-3, PFN 24-3 and PFN 30-3, 
which probably had problems on geometric of columns 
or load eccentricity.  

The best results were achieved in columns with 
relative eccentricity e/h higher or equal to 0.25      
(e ≥ 30 mm), evidencing difficulties in applying 
eccentricities lower than 30 mm. 

It is noteworthy that, at ultimate load, it is hard to 
obtain horizontal displacements and concrete strains 
because, at this moment, in some cases, the values 
increase indefinitely. Therefore, the test behavior is 
valid at close of ultimate load, mainly for columns with 

high eccentricity. 
Factors, such as bonding of strain gauges, geometric 

imperfections of cross sections, test setup and handling 
of columns, may have affected some results. 
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