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Abstract: Stochastic queuing models have been and still are an essential topic in the field of traffic flow theory at signalized 
intersections. The present article enhances the existing theoretical knowledge by a systematic review of the mutual relationship 
between traffic demand, green time split and average delay in context of a coupled system of Webster equations for a simple 
intersection scenario. Formally proved conditions for the existence and uniqueness of valid fixed time control strategies are derived 
so that these are able to simultaneously handle given traffic flows at the four approaches of the considered intersection. At that, 
consistency with measured or planned (maximum) average delays, for instance, is ensured. The strictly mathematical analysis finally 
leads to a new way of illustrating the dependencies of the three above named variables in terms of level curve diagrams that become 
an easy-to-understand graphical tool for answering a number of practical questions in context of traffic signal planning. Several 
theoretic examples are discussed.  
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1. Introduction  

Traffic signals and waiting times have a significant 
effect on the quality of urban traffic. Thus, it is not 
surprising that delay models for signalized 
intersections have been playing an important role in 
transportation research and traffic engineering for 
many decades up to today and have become an 
indispensable tool for practical purposes in the field of 
traffic management and transportation planning [1]. In 
this context, Webster’s delay formula [2], as 
originally published in 1958 based on former 
theoretical studies by Wardrop [3] and Kendall [4], 
can be regarded as the basic steady-state model for 
non-deterministic (i.e., Poissonian) traffic demand. 

It describes the average delay d (s) per vehicle (veh) 
at a traffic signal in case of fixed-time control given 
cycle time c (s), (effective) green time g (s), traffic 
demand q (veh/s) and saturation flow s (veh/s). 
Precisely, d can be calculated as following: 
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where, x = q/(λs) is the degree of saturation, and     
λ = g/c is the “proportion of the cycle which is 
effectively green for the phase under   
consideration” [2]. Thus, given fixed signal 
parameters, delay is usually interpreted as a function 
of demand (Fig. 1), i.e., d = d(q). 

Based on that, Webster applied Eq. (1) for deriving 
optimal cycle times and green time splits given the 
measured demand for all approaches of the considered 
intersection [2], for instance. Other researchers used 
the formula as the origin for the development of 
non-steady-state delay models that are valid also for 
oversaturated traffic [1, 5, 6] and that have become an 
integral part of common guidelines in traffic 
engineering, such as the famous Highway Capacity 
Manual [7]. 

Following that, Webster’s results have always been 
and still are an important benchmark for other queuing 
models [8, 9] and even more for innovative signal 
control strategies [10, 11]. Current research activities 
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Fig. 1  Average delay based on Webster with (dashed line) and without (solid line) heuristic correction term (c = 60 s,      
g = 30 s, s = 0.5 veh/s).  
 

in context of Webster’s theory include the validation 
and modification of the original terms for the optimal 
cycle length [12, 13] or the deeper analysis of the 
“effect of green time on stochastic queues at traffic 
signals” [14]. Thus, although nearly 60 years old, 
there are still interesting features in the above formula 
that are worthy to be studied. 

In this regard, the present contribution discusses the 
inversion of the delay formula from Eq. (1). As 
modern sensor technologies for traffic state detection 
more and more facilitate measuring travel times and 
delay, the question arises what the corresponding 
demand is given the delay, i.e., q = q(d). Moreover, it 
might be interesting to ask what the maximum 
demands are that can be handled by common 
(fixed-time) control strategies based on preset 
objectives regarding maximum delays for each 
individual intersection approach. This paper provides 
the answers in a strictly mathematical way in case of a 
standard two-phase intersection with coupled green 
times for the concurrent traffic streams based on 
Webster’s theory. By that, it reveals new theoretical 
insights into the structural properties of the delay 
formula. In particular, it yields necessary and 
sufficient conditions for the existence and uniqueness 
of the solution of the system of equations that arises 
from coupling the delay formulas for more than one 

intersection approach. 
The paper is structured as follows. At first, Section 2 

fleshes out the mathematical problem that will be 
solved. This includes a detailed description of the 
considered two-phase intersection, as well as the exact 
formulation of the resulting system of equations for 
the delays. The strictly mathematical solution is then 
derived in Section 3. As the results can be interpreted 
graphically very well, this is part of Section 4, which 
continues the theoretical argumentation but also 
discusses practical applications of the findings. 
Section 5 finally is the conclusion. 

2. Problem Statement and Specification 

Consider the simple two-phase intersection as 
depicted in Fig. 2 with the single-lane approaches    
i = 1, 1′, 2, 2′, each of them having the same  
saturation flow s and an individual stochastic          
(i.e., Poissonian) [2, 15], but stationary traffic demand qi. 

Let gi denote the (effective) green time of approach 
i for all i while the cycle time c is fixed. Amber times 
are ignored [2]. Two-phase signalization then means 
that gi = gi′ for i = 1, 2 and g1 + g2 = c. Hence, write  
g1 = g1′ = c and g2 = g2′ = (1 – )c, where 0 <  < 1. 
Consequently, with c and s fixed, the delay formula 
from Eq. (1) reads as: 
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Fig. 2  Intersection layout with traffic streams and 
demand.  
 

for all i = 1, 1′, 2, 2′, where: 
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for i = 2, 2′.  
Note that the heuristic correction term, i.e., the third 

addend in Eq. (1)—as it was originally introduced by 
Webster in order to get a better fit to his empirical 
data [2]—is omitted here for simplicity (Fig. 1). 
Needless to say, di denotes the average delay at the 
approach i for all i. Note that f1 and f1′, as well as f2 
and f2′, yield identical values given the same demand 
qi. Moreover, f1(q, ) = f2(q, 1 – ) for all q. That is, f1 
and f2 are symmetrical with regard to the axis  = 1/2. 

As well known [1], the above delay formulas are 
practically valid for undersaturation only (i.e.,      
q1, 1′ < s and q2, 2′ < (1 – )s, respectively) because of 
the relevant poles of fi at x = 1 for all i (Fig. 1). But, 
when q1,1′  [0, s) and q2,2′  [0, (1 – )s), they 
directly yield more or less reasonable estimates of the 
delay given . However, the contrary question is: Are 

there always such non-negative qi for i = 1, 1′, 2, 2′ 
together with   (0, 1) that solve the system of Eq. (2) 
given arbitrary (measured) delays di for i = 1, 1′, 2, 2′? 
Moreover, is the solution unique or what are the 
conditions for its uniqueness? 

3. Mathematical Solution 

The mathematical analysis of the delay functions fi 
from Eq. (2) can be reduced to studying f1 only. Due 
to the identity of f1 and f1′, the results for f1′ are exactly 
the same as for f1, and those for f2 and f2′ are directly 
obtained by replacing  with (1 – ) for symmetrical 
reasons. 

3.1 Lemma 1 
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with c > 0 and s > 0 fixed. Given   (0, 1), f1 is a 
strictly increasing function for 0 ≤ q1 < s. 

Proof: The function f1 is differentiable for all     
0 ≤ q1 < s with 

 
 

 

 

2

1 1 2
1 1

2 2
1

1
23 3

1

1
( , )

2 1
1

2 1 ( )

2 1 ( )

c
f q

q s q s

s q s
q

s q s




 

 




 







     (6) 

Hence, ∂/∂q1f1(q1, ) > 0 for all 0 ≤ q1 < s because 
of   (0, 1), and the proof is completed. 

The strict monotonicity of f1, together with the 
knowledge that f1(q1, ) → ∞ as q1↑s, implies that 
there always is a unique demand value q1  [0, s) for 
the isolated intersection approach that solves        
d1 = f1(q1, ) for given   (0, 1) whenever: 

 1
2

),0( 2
11  

cfd          (7) 

In fact, q1 is the solution of a quadratic equation as 
it will be shown in Lemma 2. However, note before 
that there is no such positive q1  [0, s) if         
d1 < f1(0, ), of course. Hence, Eq. (7) is a necessary 
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and sufficient condition for the existence of a unique 
solution of d1 = f1(q1, ) in the relevant interval [0, s) 
for any given   (0, 1). 

3.2 Lemma 2 

Let c > 0, s > 0 and   (0, 1) be fixed. Then, given 
d1 ≥ 0: 
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This is a solution of d1 = f1(q1, ). Moreover, if the 
condition of Eq. (7) holds for d1, this solution also 
satisfies 0 ≤ q1 < s. 

Proof: Let d1 ≥ 0. Elementary transformations show 
that d1 = f1(q1, ) is equivalent to the simple quadratic 
equation: 

1 1

2 ( ) ( )
1 1 0d dq q             (10) 

with the coefficients from Eq. (9). Thus, given the 
occurring square root exists as a real number, the 
values 
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are the natural solutions of d1 = f1(q1, ). In this 
context, the validity of 
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can be proved either directly by some elementary 
calculus or by the following arguments: For 0 <  < 1, 
the function f1 has two poles, namely q1 = s and   
q1 = s, with f1(q1, ) → –∞ as q1↓s and f1(q1, ) → ∞ 
as q1↑s. In between, f1 is a continuous function. That 
is, for any d1 ≥ 0, there is a real solution of         
d1 = f1(q1, ) that necessarily has the form as in    

Eq. (11). Consequently, Eq. (12) must hold for all   
d1 ≥ 0 and   (0, 1) because otherwise there were 
complex solutions of Eq. (10) only. 

It remains to show that: 
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given that d1 satisfies Eq. (7). For this purpose, note 
that previous arguments already showed that there 
always are a unique solution with q1  [0, s) and a 
second one with q1  (s, s) in the considered case. 
Since now q1

+ and q1
– are the only possible solutions 

and q1
+ ≥ q1

–, it directly follows that q1
–  [0, s) as 

proposed. 
So far, Eq. (7) has been shown to be a necessary 

and sufficient condition for the existence and 
uniqueness of the solution of d1 = f1(q1, ) given     
  (0, 1). Thus, in order to have a corresponding 
solution of the original system of Eq. (2), the 
above-named (symmetric) condition needs to hold 
simultaneously for all four intersection approaches, 
i.e.: 

2
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By simple considerations, this is equivalent to: 

1 1 2 22min{ , } 2min{ , }1 d d d d
c c
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while still 0 <  < 1, of course. That means, there are 
some additional limitations concerning  when 
searching for a solution of the system of Eq. (2). In 
particular, it turns out that: 

1 1 2 22 min{ , } 2 min{ , } 1d d d d
c c

     (16) 

together with di > 0 for all i = 1, 1′, 2, 2′ is a necessary 
and sufficient condition for the existence of a solution 
because only then there is a   (0, 1) that satisfies  
Eq. (15). Note that usually such a  is not uniquely 
defined. That is, given  is a free variable, Eq. (16) 
does not guarantee the uniqueness of the solution 
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except for the specific case where: 
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c c
      (17) 

Needless to say, if   (0, 1) is fixed such that   
Eq. (15) holds, the solution becomes unique in any 
case (Lemma 2). 

3.3 Remark 3 

Let qi > 0 for i = 1, 1′, 2, 2′. Then, Eq. (16) implies 
that it is impossible to make the corresponding delays 
di arbitrarily small for all intersection approaches 
simultaneously except if c → 0 is allowed. However, 
there are practical limitations, such as fixed loss times 
per signal phase that forbid to choose extremely short 
cycle lengths c. 

4. Graphical Interpretation and 
Applications 

As in Section 3, the following analysis concentrates 
on i = 1 first while the results for the other intersection 
approaches are finally obtained by symmetry 
arguments. Thus, let d1 ≥ 0. Lemma 2 then yields the 
function hd1: (0, 1) → IR with 
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It is a well-defined function that solves: 

  11 ),(
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for all   (0, 1). Hence, the term from Eq. (18) can 
be interpreted as or determines the level curve of the 
delay function f1 in the q1--plane that belongs to the 
level d1. Note that d1 does not need to satisfy the 
condition of Eq. (7) at this point. Fig. 3 gives a first 
graphical impression about the structure of the level 
curves for different d1 ≥ 0. 

4.1 Specific Properties of the Level Curves 

A detailed summary of the relevant properties of 
the level curves—including the mathematical 
proofs—is given in the following. 

4.1.1 Lemma 4 
Let c > 0 and s > 0 fixed. Then, given that d1 ≥ 0, 

the following propositions regarding the level function 

hd1: (0, 1) → IR from Eq. (18) hold: 
(1) hd1 is a continuous function for all   (0, 1); 
(2) If 2d1 < c, let 

c

d1
0

2
1              (20) 

This is the only root of hd1 with hd1(0) = 0 in the 
open interval (0, 1). Otherwise, if 2d1 ≥ c, there is no 
root of hd1 in (0, 1); 

(3) The following limits hold: 
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Fig. 3  Level curves of the delay function f1 with c = 60 s and s = 0.5 veh/s.  
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(4) There is a natural upper boundary for hd1, 
namely hd1() < s for all   (0, 1); 

(5) Given   (0, 1), one obtains hd1() > 0 if and 
only if max{0, 0} <  < 1 with 0 as in Eq. (20); 

(6) hd1 is a strictly monotone function when  
max{0, 0} <  < 1 with 0 as in Eq. (20). 

Proof:  
(1) The continuity of hd1 is directly obtained from 

its definition in Eq. (18); 
(2) Let   (0, 1). According to Eq. (19), the 

condition hd1() = 0 then implies: 
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111 1
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cfhfd d   (23) 

By simple transformations, one finds that 0 from 
Eq. (20) is the only root of hd1 in the open interval   
(0, 1) given 2d1 < c. Moreover, when 2d1 ≥ c, there is 
no   (0, 1) such that hd1() = 0; 

(3) The proposed limits are easily obtained from  
Eq. (18) by inserting  = 0 and  = 1, respectively; 

(4) Proposition (4) has already been proved in 
Lemma 2 for the situation when the condition from  
Eq. (7) holds, i.e., when 0 ≤  < 1 with 0 as in    
Eq. (20). 

In the general case, assume that there is a   (0, 1) 
such that hd1() ≥ s. The observation that hd1(1) < 1·s 
(see Proposition (3)), together with the continuity of 
hd1 (see Proposition (1)), then implies that there is a  
′  [, 1) such that hd1(′) = ′s (Fig. 4). Thus: 

 11 1 1( , ) ( ),df s f h d             (24) 

in contradiction to the fact that f1(·,′) has a pole at  
q1 = ′s. That means, the original assumption must be 
wrong and Proposition (4) holds; 

(5) Let max{0, 0} <  < 1 with 0 as in Eq. (20). 
Then, Lemma 2 yields that hd1() ≥ 0. Since 0 is the 
only possible root of hd1 in the open interval (0, 1), i.e., 
hd1() ≠ 0 for all   (0, 1) where  ≠0, this directly 
proves the first direction of the equivalence in 
Proposition (5). 

In order to show the opposite direction, let 2d1 < c 
so that 0 > 0 (otherwise, there is nothing to do). Then, 
assume that hd1() > 0 for any   (0, 1) with  ≤ 0. 
Consequently, since hd1() < s (see Proposition (4)), 
the strict monotonicity of f1 for 0 ≤ q1 < s (see 
Lemma 1) implies that: 
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Thus,  > 0 in contradiction to the assumption, and 
the proposition holds; 

(6) Assume that hd1 is not strictly monotone for 
max{0, 0} <  < 1. The continuity of hd1 (see 
Proposition (1) then yields the existence of numbers 
1 and 2 such that max{0, 0} < 1 < 2 < 1 with 
hd1(1) = hd1(2) = q. Moreover, the       
Propositions (4) and (5) imply that 0 < q < 1s and   
0 < q < 2s. Thus: 

 
 
   
 
   
 

1

221

2
22

2

2
2

1
22

1

2
1

1111

),(
)(1212

1

)(1212
1

),(

1

1

d

hf
sqs

q
sq

c

sqs
q

sq
c

hfd

d

d
































  (26) 

which is obviously wrong. Consequently, hd1 must be 
strictly monotone for max{0, 0} <  < 1. 

Lemma 4 contains all necessary information for a 
detailed drawing of the level function hd1 with regard 
to positive q1 (Fig. 5). Note that the same picture 
holds for i = 1′ as well, of course. As can be seen, the 
Propositions (2) and (3) yield the exact location of the 
intersection points between the level curves and the 
two important axes q1 = 0 and  = 1. 

The corresponding plots for i = 2, 2′ are obtained by 
simple symmetry arguments as already discussed  
(Fig. 6). 

Finally, Lemma 5 reveals some further 
mathematical properties of the above level functions 
mainly based on the results of Lemma 4. 
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Fig. 4  Schematical illustration of the proof of Proposition (4) in Lemma 4.  
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

κ

q1 [veh/sec]

d 1
 = ∞ [s

ec]

d1 = 0.3 [sec]
d1 = 1 [sec]
d1 = 2 [sec]
d1 = 4 [sec]
d1 = 7 [sec]
d1 = 10 [sec]
d1 = 15 [sec]
d1 = 20 [sec]
d1 = 30 [sec]
d1 = 50 [sec]

 
Fig. 5  Close-up view of the level curves of f1 and f1′ with c = 60 s and s = 0.5 veh/s.  
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

κ

q2 [veh/sec]

d
2  = ∞ [sec]

d2 = 0.3 [sec]
d2 = 1 [sec]
d2 = 2 [sec]
d2 = 4 [sec]
d2 = 7 [sec]
d2 = 10 [sec]
d2 = 15 [sec]
d2 = 20 [sec]
d2 = 30 [sec]
d2 = 50 [sec]

 
Fig. 6  Corresponding level curves of the delay functions curves of f2 and f2′ with c = 60 s and s = 0.5 veh/s.  
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4.1.2 Lemma 5 
Let c > 0 and s > 0 be fixed as well as d1 > 0. 
(1) Then, given q1 > 0 with: 

21
2

1

1
1 sd

sdsq


             (27) 

There is a unique *  (max{0, 0}, 1) such that 
hd1(*) = q1 where 0 as in Eq. (20). On the contrary, 
there is no such * if: 

21
2

1

1
1 sd

sdsq


             (28) 

(2) Let q1 > 0 according to Eq. (27), and  > * 
where * as in Proposition (1). Then, there is d1* > 0 
such that hd1*() = hd1(*). Moreover, d1* < d1 holds. 

Proof:  
(1) Let d1 > 0 and q1 > 0 such that Eq. (27) holds. 

Propositions (2) and (3) in Lemma 4 then imply: 

1},0max{
0)(lim

1
0

qhd 





          (29) 

1
1

1

1 21
2)(lim

1
q

sd
sdshd 








       (30) 

where, 0 is defined as in Eq. (20). Consequently, 
since hd1 is a continuous function (see Proposition (1) 
in Lemma 4), there is a *  (max{0, 0}, 1) such that 
hd1(*) = q1. Moreover, the strict monotonicity of hd1 
(see Proposition (6) in Lemma 4) for   (max{0, 0}, 1) 
also proves the uniqueness of *. 

On the contrary, the same monotonicity together 
with Eq. (28) yields: 

1
1

1

1 21
2

)(lim*)(
11

q
sd

sd
shh dd 








   (31) 

for all *  (max{0, 0}, 1). Thus, the proof of 
Proposition (1) is completed. 

(2) Let q1 > 0 such that Eq. (27) holds, and * as in 
Proposition (1). For any   (*, 1), Proposition (4) in 
Lemma 4 then implies: 

.**)(0
1

sshd          (32) 

That means, as proposed: 

 11* 1 1: ( *), (0, ) 0dd f h f         (33) 

is a well-defined value such that d1* = f1(hd1*(), ), 
and thus hd1*() = hd1(*) because of the uniqueness 

of the solution of d1* = f1(q1, ). 
In the following, note that: 

 

 )(1)(

1
1),(

2
1

3
1

1
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ssq
q

sq
cqf

















   (34) 

Consequently, f1 is a strictly monotone function 
regarding ′  (0, 1) as long as 0 < q1 < ′s because 
then ∂/∂′f1(q1, ′) < 0. Hence, due to Eq. (32), one 
obtains: 

   **),(*),(* 1111 11
dhfhfd dd     (35) 

and the proof is completed. 
4.1.3 Remark 6 
Let, as a kind of external requirement, d1 > 0 be the 

maximum acceptable average delay for the considered 
intersection approach and q1 > 0 such that Eq. (27) 
holds. Given *  (0, 1) where hd1(*) = q1,  
Lemma 5 then implies that the same traffic demand q1 
can be served by the traffic signal with even less delay 
in case of any green time split where  > *. Thus, 
Lemma 5 is the formal proof of the intuitive statement 
that more green time for a given traffic stream with 
fixed demand necessarily reduces the corresponding 
delay. 

On the contrary, given q1 is fixed, it can be shown 
very similar as Proposition (2) in Lemma 5 that a 
reduction of the green time ( < *) always leads to 
increased delays or even results in oversaturation 
when  becomes too small. 

4.2 Graphical Illustration 

The previous results from Section 4.1, including the 
(symmetric) versions of Lemmas 4 and 5 in case of   
i = 1′, 2, 2′, have several graphical implications in 
context of the existence and uniqueness of the solution 
of the original system of Eq. (2). For, let di > 0 for all  
i = 1, 1′, 2, 2′. The roots of hdi (referring to 
Propositions (2) and (3) in Lemma 4) together with 
the monotonicity of the level functions (Proposition (6) 
in Lemma 4) then show that the necessary and sufficient  
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Fig. 7  Graphical illustration of the “-band” with c = 60 s and s = 0.5 veh/s.  
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Fig. 8  Graphical illustration of the solution given  = 0.63 with c = 60 s and s = 0.5 veh/s.  
 

conditions from Eqs. (15) and (16) are equivalent to 
the fact that there is an area as in Fig. 7 where for each 
fixed  within the depicted “-band” there are 
intersection points with all four level curves (Fig. 8). 
Obviously, the corresponding qi are uniquely defined 
due to the strict monotonicity of hdi for all i whenever 
 is fixed. 

Interestingly, Fig. 8 also implies some further 
conditions or scenarios for the uniqueness of the 
solution of the system of Eq. (2) in the case where  is 
unknown. Namely, let 



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dd
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idi

},min{2
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and 











 

c
dd

hq
idi

},min{2 22          (37) 

for any i  {1, 1′, 2, 2′}. Then, there is a unique  
located within the depicted “-band” such that   
hdi() = qi. And thus, the overall solution comprising 
the traffic demands for all four intersection 
approaches is unique again. But, note that there is no 
such solution if qi does not satisfy the          
Eqs. (36) and (37). In general, that means the 
knowledge about the actual green time split as 
represented by  is mathematically equivalent to the 
knowledge about the traffic demand qi for any of the 
four intersection approaches. 
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4.3 Applications 

From a practical point of view, variants of Fig. 7 
can also be seen as a simple graphical tool for traffic 
signal planning. For, let di > 0 be the maximum 
acceptable delays for the considered intersection 
approaches i = 1, 1′, 2, 2′ (Fig. 2) in the sense of 
external planning requirements. Then, the values: 

max 2 22 min{ , }min 1 ,
ii d

d dq h
c


          

   (38) 

for i = 1, 1′ and 

max 1 12min{ , }max 0 , 1
ii d

d dq h
c


          

 (39) 

for i = 2, 2′ are easily derived from Fig. 7 as can be 
seen in Fig. 9. Obviously, for all i  {1, 1′, 2, 2′}, the 
defined qi

max represents the maximum traffic demand 
for the intersection approach i that can be served by a 
simple fixed time control with two phases while 
ensuring that the complete set of given delay 
requirements di is satisfied. Needless to say, the 
maximum flow qi

max for the approach i can only be 
realized in case of suitable flows at the other three 
intersection approaches. Of course, higher manageable 
flows q1 and q1′ are always at the cost of lower 
manageable flows q2 and q2’, and vice versa. By 
varying  within the depicted “-band”, it is 
graphically possible to find a valid trade-off between 

the conflicting traffic streams. 
On the contrary, the diagrams may also be used to 

decide whether some observed or planned traffic 
demands qi for i = 1, 1′, 2, 2′ can be handled at all by a 
corresponding two-phase signal control given 
maximum acceptable delays di for all intersection 
approaches as before. For this purpose, note that the 
delay requirement for the intersection approach 1, for 
instance, is met if and only if  lies above the 
(potential) intersection point of the level curve hd1 and 
the vertical line as defined by q1 (cf. Remark 6). Of 
course, the analogous (eventually symmetric) 
statements hold for i = 1′, 2, 2′ as well. That means the 
delay requirements are satisfied for all four 
intersection approaches simultaneously if and only if 
 is chosen within the reduced “-band” as depicted in 
Fig. 10. Clearly, this “-band” may even vanish 
completely depending on the concrete values di and qi 
for i = 1, 1′, 2, 2′ so that there is no solution of the 
described specific problem in that case. 

Finally, the discussed theory concerning the 
inversion of Webster’s delay formula could, for 
instance, be applied for generating a simple adaptive 
signal control scheme with temporarily fixed green 
time splits and static cycle times. For, assume that 
there are periodical measurements of the average 
delay (i.e., di,t > 0) at all four intersection approaches 
(Fig. 2)  based  on  floating car  data  or  other detection 
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Fig. 9  Maximum flow per intersection approach given delay requirements with c = 60 s and s = 0.5 veh/s.  
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Fig. 10  Reduced “-band” given traffic flows and delay requirements with c = 60 s and s = 0.5 veh/s.  
 

techniques. Then, the above theory would allow to 
derive the corresponding traffic demand qi,t for all    
i = 1, 1′, 2, 2′ at the regular time intervals t based on a 
known green time split t. Consequently, a suitable 
green time split t+1 for the next time interval is 
defined by: 

)}(,)(max{
: ,1,1

1 
 


tdtd

t
tt

hh 
      (40) 

where: 
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,2,2
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tt

hh

hh











    (41) 

That is, green times are allocated more or less 
proportionally to the computed traffic demand as in 
standard fixed time traffic signal planning (note that 
the saturation flow s and the number of lanes were 
assumed to be identical for all four intersection 
approaches). Some first prototypical simulations of 
this simple adaptive control scheme however showed 
that it becomes unstable very fast and requires a 
deeper analysis first which is out of the scope of this 
present article. 

5. Conclusions 

Webster’s delay formula belongs to the 
fundamentals of traffic flow theory at signalized 
intersections and is still of interest for the research 
community as discussed in the introduction. Based on 
strictly mathematical considerations, a number of 

properties in context of its inversion were derived in 
the present article for a simple intersection scenario 
which includes explicit proofs of conditions for the 
existence and uniqueness of the solutions of the 
system of Eq. (2). In particular, the analysis of the 
implicit level functions in Section 4 showed up a new 
and highly informative way of illustrating the 
relationship between traffic flow, average delay and 
green time split (Fig. 7). By that, a number of 
practical questions in context of traffic signal planning 
can be answered directly by graphical arguments only. 

At the moment, of course, the described theory is 
valid only for simple two-phase intersections with 
fixed time control as depicted in Fig. 2. Thus, further 
studies should extend the proved propositions and 
lemmas in order to cover also more complex 
intersection scenarios. In this regard, the idea of using 
level curve diagrams for graphical traffic signal 
planning is not necessarily limited to Webster’s delay 
formula, but may be adapted to other delay models 
including those for adaptive control strategies as well. 
Consequently, the presented work is not only 
interesting for theoreticians, but may also evolve into 
helpful tools for practitioners in the field of signalized 
traffic flow. 
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