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Abstract: MC (Monte Carlo) simulation code, JA-IPU is used to study radiation damage of SiC irradiated to spallation neutron and 
AmBe neutron spectra. The code is based on the major physical processes of radiation damage on incorporation of atomic collision 
cascade and limited to 10 MeV neutron energy. A phenomenological relation for radiation swelling is also derived. Based on the 
calculation of swelling, DPA (displacement per atom), defect production efficiency and effective threshold energy, Ed

eff from the data 
of MC simulation, SiC is inferred to be a highly radiation resistant material when compared with Nb and Ni metals which are used in 
composition of several reactor steels. Experimental results of hill-hock density measured using AFM (atomic force microscopy), also 
confirm radiation resistant behavior of SiC. 
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1. Introduction 

High energy spallation neutrons have important role 

to play in systems of energy like ADSS (accelerator 

driven sub critical) and fusion energy [1-3]. ADSS are 

assumed for both “nuclear energy” and “incineration of 

nuclear waste”. In such systems, DPA (displacement 

per atom) is expected to be much higher compared to a 

critical system or a conventional reactor because 

energy of spallation neutrons is much higher than a 

critical reactor. This has generated a renewed interest 

in the studies of radiation damage [4-6] particularly for 

the development of new radiation resistant materials. 

At neutron energies up to several tens of MeV elastic 

collisions dominate the non-elastic collision. 

In an elastic collision, the produced atomic recoil 

gives rise to a cascade of atomic collisions besides the 

primary  cascade  of  incident  particle.  In  case  of 
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irradiation by neutrons a material is damaged both on 

the surface and in the bulk. Displacement of atoms may 

give rise to a number of physical effects like swelling, 

formation of voids, change in resistivity, induction of 

magnetism and change in the physical strength of a 

material. Monte Carlo simulation of atomic cascades, 

number of displaced atoms and their positions in the 

bulk, size of a voids, inter-atomic separation of the 

displaced  atoms  and  ionization  loses  are  very 

important to understand several new features arising 

due to an irradiation. In the JA-IPU code [7], we have 

introduced development of the atomic cascade and 

ionization loses which were not available so far in 

several codes used for the study of radiation damage. In 

the present study, we have carried out estimations of 

various quantities of radiation damage in case of SiC 

and Nb irradiated directly by the spallation neutrons 

produced in 660 MeV proton + Pb collision and 

compared  with  the  effects  estimated  in  case  of 

irradiation by a rather softer neutron spectrum of 
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Table 1  Results of Nd (Tdam), Tdam, NNRT (Tdam) and  for SiC calculated by generating histories of 1010 neutrons 

corresponding to the spallation neutron spectrum incident on the target. 

En (eV) (n/p) Nd (> Ed) Nd (< Ed) 
Tdam/(n/p) 
(eV) 

NNRT (Tdam) 
/(n/p) 

Nd (> Ed)/ 
(n/p) 

 = Nd/NNRT 
(Tdam) 

4.85 × 103 9.95 × 103 1.42 × 102 7.80 × 101 1.33 × 10-1 1.33 × 10-3 1.43 × 10-2 10.7580 

1.09 × 104 1.16 × 105 8.80 × 101 4.20 × 101 8.43 × 10-3 8.43 × 10-5 7.59 × 10-4 8.9980 

1.64 × 104 2.39 × 105 2.12 × 102 1.07 × 102 9.50 × 10-3 9.450 × 10-5 8.87 × 10-4 9.3392 

9.95 × 104 2.83 × 106 6.50 × 102 3.79 × 102 2.81 × 10-3 2.81 × 10-5 2.30 × 10-4 8.1761 

1.90 × 106 1.84 × 106 3.71 × 104 2.02 × 104 3.01 × 10-1 3.01 × 10-3 2.02 × 10-2 6.7136 

2.85 × 106 1.50 × 106 2.05 × 103 1.16 × 103 1.72 × 10-2 1.72 × 10-4 1.36 × 10-3 7.9503 

4.18 × 106 8.24 × 105 1.77 × 105 9.71 × 104 3.57 × 100 3.57 × 10-2 2.15 × 10-1 6.0333 

4.60 × 106 8.68 × 105 1.06 × 103 6.09 × 102 1.48 × 10-2 1.48 × 10-4 1.23 × 10-3 8.2609 

5.06 × 106 8.74 × 105 1.94 × 104 1.042 × 104 3.72 × 10-1 3.72 × 10-3 2.22 × 10-2 5.9573 
 

 at small energies shows that simulated number Nd (> 

Ed) is much higher than NNRT per incident n/p and in 

case of higher neutron energies a part of PKA energy is 

not utilized for producing Frenkel pairs probably 

because PKA escapes out of the sample. As a result,  

declines to smaller value. 

In the following Fig. 4, results of Monte Carlo 

calculations of defect production efficiency,  as 

function of < EPKA > for SiC and Nb samples irradiated 

to both AmBe and spallation neutron spectra are 

displayed for comparison with results of Ni metal 

supposedly irradiated to spallation neutrons only 

because case of AmBe spectrum is already discussed [7]. 

It is revealed that,  > 1 in case of SiC, Nb and Ni 

irradiated to the spallation neutrons (detailed data of 

SiC is displayed in Table 1 also) and  < 1 in case of 

the SiC and Nb irradiated to the AmBe neutron 

spectrum. Quantitatively,  is 2-3 times higher in case 

of Ni than both SiC and Nb showing, Ni is more 

damaged than both SiC and Nb by the Frenkel pairs. 

In Fig. 5, MC simulation results of Nd and Tdam are 

plotted for SiC, Nb and Ni irradiated to the spallation 

neutrons along with SiC also irradiated to the AmBe 

moderated neutron spectrum [7]. It may be inferred 

that: 

 In all the three cases of SiC, Ni and Nb samples, 

there is linear dependence of growth of Nd with Tdam 

per incident spallation and the AmBe neutron spectra. 

Values of slope “k” are given in Table 2 for the three 

samples and values for Ni and Nb for irradiation by the 

moderated AmBe spectrum are taken from Ref. [7]; 

 In case of spallation neutrons, value of the slope, 

“k” is much higher in case of Ni than SiC and Nb 

samples. It may be inferred that, to displace an atom of 

SiC or Nb is much harder than Ni. This is further 

explored for the AmBe neutron spectrum where we 

can see that, the displacement is much more harder in 

case SiC and Nb than Ni compared to the case of 

spallation neutrons. 

2.2 Effects of Irradiation 

2.2.1 Swelling 

Based on the linear relationship between Nd and 

Tdam shown in Fig. 5 and the data displayed in Table 2 

for the two neutron spectra, a phenomenological 

approach is developed for estimation of swelling. 

According to this: 

d ௗܰ ן d ௗܶ               (3) 

d ௗܰ ൌ ݇ d ௗܶ 

Constant, k is spectrum dependent. On integration: 

 d ௗܰ ൌ  ݇ d ௗܶ 
்ೌ

ா
          (4) 

ௗܰ ൌ ݇ሺ ௗܶ െ ௗሻܧ   (5)          ܥ

For Tdam = 0, Nd = 0 thus, C = kEd, 
ே


ൌ

݇ ቀ
்ೌ


െ

ଶா


ቁ  can be used for calculations per 

incident neutron. 

Thus, the density of displaced atoms may be written 

as: 

݊ௗ ൌ
ே


ൌ ݇

ሺ்ೌ ି ଶாሻ


           (6) 
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which leads to: 

ୢ


ൌ ቀ



 
ቁ d ௗܶ െ ቀ

ୢ


ቁ       (12) 

For low dose irradiation, last term may be 

considered negligible. Thus, the swelling, dV/V for a 

change of damage energy, dTdam may be approximated 

by: 

ௌܵௐ ൌ
ୢ


~ ቀ



 
ቁ d ௗܶ ൌ ቀ



ே
ቁ d ௗܶ  (13) 

This shows that the swelling depends linearly on 

dTdam and k/Nd which in turn depends on the incident 

radiation spectrum. 

Taking analogy with the process of thermal 

expansion, coefficient of swelling due to Frenkel pairs 

can be approximated from: 

ௌௐߙ ൌ ቀ


 
ቁ             (14) 

For the purpose of analysis, displacement on the 

surface of an irradiated material can be accessed from 

the AFM (atomic force microscopy) analysis [7]. 

Spot views of AFM of the pristine and irradiated 

samples of SiC are given in Fig. 6. In Fig. 7, measured 

hill hock distribution is given. In the pristine sample 

hill-hock density comes out to be ~12.79 × 1010/cm2 

and in case of irradiated sample, it is ~23.39 × 

1011/cm2 showing that, on irradiation hill-hock density 

of the SiC sample increases only ~18.3 times. In case 

of Ni metal, [7] difference of hill-hock density in 

pristine and irradiated was very large because of the 

fact that Ni is a metal and is not a radiation resistant 

material like SiC. In case of Nb sample, AFM analysis 

could not be possible due to its rough surface. Based 

on the data of volume of the sample and values of “k” 

given in Table 2 and using Eq. (15), swelling 

coefficient, sw for SiC irradiated to the given 

spectrum of spallation neutrons, comes out to be 

~8.53E-13 cm-1eV-1. In case of Ni metal after 

irradiation by a relatively softer neutron spectrum of 

AmBe source [7], sw
 has been estimated to be 

4.7E-10 cm-1eV-1. This is about 500 times higher than 

SiC irradiated to a higher energy neutron spectrum. 

This may be interpreted in favour of SiC to be a highly 

radiation resistant material with respect to its swelling 

behaviour. More experiments need to be performed in 

this direction where swelling and electrical resistance 

can be measured. 
 

 
(a) 

 
(b) 

Fig. 6  (a) AFM picture of SiC sample pristine; (b) AFM picture of SiC irradiated to the spallation neutrons. 
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3. Conclusions 

From the data of Monte Carlo simulations, following 

may be inferred: 

(1) Defect production efficiency,  as displayed in 

Fig. 4, is higher in case of metals than the SiC irradiated 

to the spallation neutrons. Evidently, effective threshold 

energy, Ed
eff [7] is smaller in case of metals than the SiC. 

As a result, because DPA/yr/n depends on the Frenkel 

pairs, Nd, therefore, it is much smaller in case of SiC 

than the metals like Ni and Nb; 

(2) Based on MC results of Nd and Tdam, a 

phenomenological relation is derived for understanding 

swelling coefficient, sw. The coefficient is much 

smaller (~1/500) in case of SiC than Ni. Similar 

conclusion can be drawn from the observations that 

defect production efficiency,  and DPA/yr are smaller 

in SiC than Ni or Nb metals. Conclusively, these 

observations can be interpreted in favor of SiC to be 

relatively highly radiation resistant towards the given 

spallation and AmBe neutron spectra; 

(3) Based on the data of volume of the sample and 

values of “k” given in Table 2 and using Eq. (14), 

swelling coefficient, sw for SiC irradiated to the given 

spectrum of spallation neutrons, comes out to be ~8.53 

× 10-13 cm-1eV-1. In case of Ni metal after irradiation to 

a relatively softer neutron spectrum of AmBe source [7], 

sw has been estimated to be 4.7 × 10-10 cm-1eV-1. This 

is about 500 times higher than SiC which is irradiated to 

a higher energy neutron spectrum. This may be 

interpreted in favor of SiC to be a radiation resistant 

material with respect to its swelling behavior. More 

experiments need to be performed in this direction for 

correlating swelling with the change in electrical and 

mechanical characteristics of the irradiated material. 

Acknowledgments 

Authors are thankful to DST (Department of 

Science and Technology) (India) for the grants under 

the ILTP (Integrated Long Term Program) on Science 

& Technology Co-operation Number—A6.24 and 

RFBR (Russian Foundation on Basic Research) 

project as well as to the JINR (Russia) for providing 

Phasatron beam. 

References 

[1] Bowman, C. D., Arthur, E. D., Lisowski, P. W., Lawrence, 
G. P., Jensen, R. J., Anderson, J. L., Blind, B., Cappiello, 
M., Davidson, J. W., England, T. R., Engel, L. N., Haight, 
R. C., Hughes III, H. G., Ireland, J. R., Krakowski, R. A., 
LaBauve, R. J., Letellier, B. C., Perry, R. T., Russell, G. J., 
Staudhammer, K. P., Versamis, G., and Wilson, W. B. 
1992. “Nuclear Energy Generation and Waste 
Transmutation Using an Accelerator-Driven Intense 
Thermal Neutron Source.” Nucl. Instrum. Methods A 320 
(1-2): 336. 

[2] Rubbia, C., Rubio, J. A., Buono, S., Carminati, F., Fietier, 
N., Galvez, J., Geles, C., Kadi, Y., Klapisch, R., 
Mandrillon, P., Revol, J. P., and Roche, C. 1995. 
“Conceptual Design of a Fast Neutron Operated High 
Power Energy Amplifier.” CERN/AT/95-44 (ET). 

[3] Janssen, A. J. 2004. “Transmutation of Fission Products 
in Reactors and Accelerator-Driven Systems.” 
ECN-R-94-001. 

[4] Alexandar, R. 2008. “Radiation Damage Studies on 
Fusion Reactors.” Presented at the IAEA Technical 
Meeting TM34567 on the Accelerator Simulation and 
Theoretical Modeling of Radiation Effects (SMoRE), 
Kharkov, Ukraine. Accessed November 16-19, 2009. 
http://www- naweb.iaea.org/napc/physics/meetings/ 
TM34567/login2.html. 

[5] Broeders, C. H. M., and Konobeyev, A. Y. 2004. “Defect 
Production Efficiency in Metals under Neutron 
Irradiation.” Journal of Nuclear Material 328 (2-3): 
197-214. 

[6] Greenwood, L. R. 1983. “A New Calculation of Thermal 
Neutron Damage and Helium Production in Nickel.” J. 
Nucl. Mat. 115 (2-3): 137. 

[7] Kumar, V., Raghaw, N. S., and Palsania, H. S. 2012. “A 
Monte Carlo Code for Radiation Damage by Neutrons.” 
Nuclear Science and Engineering 172 (2): 151-63. 

[8] “TALYS code.” Accessed July 19, 2015. http://www. 
talys.eu. 

[9] Broeders, C. H. M., Konobeyev, A. Y., and Voukelatou, 
K. 2004. IOTA—A Code to Study Ion Transport and 
Radiation Damage in Composite Materials. Karlsruhe: 
Forschungszentrum Karlsruhe, 1-2. 

[10] Norgett, M. J., Robinson, M. T., and Torrens, I. M. 1975. 
“Standard Practice for Neutron Radiation Damage 
Simulation by Charged-Particle Irradiation.” Annual 
Book of ASTM Standards. 

 


