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Abstract: The paper introduces a novel approach for the autonomous navigation to an unmanned vehicle based on neural networks. 
A robot from the Lego family is used to represent the vehicle used with the proposal. The main objective of this robot is to navigate 
in an autonomous way in different scenarios avoiding crash with objects, robots and people in the same environment. To do this, the 
robot is endowed with ultrasonic, color and push sensors. These devices provide information about the configuration of the scenario 
in real time. With this data and using a backpropagation neural network, the robot can react and think about which maneuver must do. 
In order to perform the training phase, a specific simulator was generated in MatLab language. Some experiments were executed to 
corroborate the performance of the two neural networks and the extrapolation of their models to a free development language 
dedicated to Lego robots (Bricx Command Center). Finally, from the obtained results, some conclusions are discussed. 
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1. Introduction  

The Lego robotics platform is a technological 
device widely used by professors, to begin students in 
the paradigms of the robotics world. Although the 
Lego robot might be “confused” with a simple toy, 
this robot is a very advanced device because not only 
is based on the Lego philosophy “constructs whatever 
you imagination tell you”, but it allows users to 
develop an empathy with the device. In this sense, the 
Lego robot has been used effectively in the Institute of 
Computer Images and Computer at the RWTH 
Aachen University, where students begin to work with 
this device from his first semester, developing 
programs where they put to test their MatLab 
language skills for digital image processing. After this, 
students are able to develop solutions for more 
specific and advanced problems, which should solve 
from the Lego platform.  

Parson and Sklar [1] described the educational 
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benefits gained through conducting practice with the 
Lego robot on issues such as Artificial Intelligence, 
Reactive Control, Heuristic Search, Predicate Logic 
and Reinforcement Learning among others. The 
authors highlight the enthusiasm of the students to 
accept the development of programming projects 
using the Lego robot. 

For example in Ref. [2], Schafer suggests that 
nowadays, teachers are using a wide range of models 
supporting students with different learning skills, can 
understand the subject of their classes. To keep the 
interest of the students, the computer courses consider 
the development of programs and applications using 
Lego robots. The implementation over these devices 
has been a key aspect to promote the programming, 
artificial intelligence and automation research areas. 

According to this, the use of a Lego robot in 
navigation methodologies, is an interesting proposal to 
put in practice the programming skills as well as the 
adaptation of artificial intelligence models to increase 
the cognitive skills and decision-making structures in 
a totally autonomous and intelligence entity. To do 
this, neural networks arise as a proper solution to 
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endow autonomous entities with the capability to take 
decisions as the human beings.  

Methods for collaborative decision-making in 
multi-agent systems are, in most cases, intense 
applications with sophisticated software algorithms 
using advanced computer technologies. In spite of this, 
important theoretical aspects on cooperation have 
been untreatable [3]. In this sense, the advance of the 
artificial intelligence community in path planning, 
adaptation, learning, fuzzy logic and knowledge 
representation together with other technics like control 
theory [4, 5], social metaphors [6, 7] or bidding 
models [8], represents a fresh path to a nearest progress. 

In this way, some researches tend to perform 
complex control and cooperation using agents. Agents 
are defined as intelligent systems capable of flexible 
and autonomous actions in a dynamic, unpredictable 
and typically cooperative scenario [9]. In this sense, 
some results have been obtained for coordinated 
actions using agent technology [3]. Recently, an 
analysis of the literature [3, 10-12] shows that for 
more complex tasks (e.g., robotic soccer, rescue 
missions, etc.), is required a reliable performance as 
well as high level of robustness in dynamics, 
unpredictable and hazardous environments.  

At the end, it is possible to argue that a robot able to 
reason about what information uses to make a 
decision, such robot will improve its individual 
decisions, which impact in a positive way to the 
correct development of a global goal. 

2. Definition of the Neural Networks Models 

The main goal of neural networks is endow to any 
entity with the capability of processing information in 
order to act in a reliable way, considering the 
requirement and constrains involving in the decisions 
itself. In this sense, two neural networks model have 
been used: Backpropagation BPNN and Counter 
propagation CPNN [13, 14]. Backpropagation is an 
algorithm of supervised learning used to training 
artificial neural networks. This algorithm of 

minimizing the squared error using gradient descent, 
so that the essential part of the algorithm is calculating 
the partial derivatives of the error with respect to the 
parameters of the neural network. 

In BPNN is necessary to clarify the concept of 
propagation: this network interconnects multiple 
layered perceptrons, but not each layer perceptron is 
interconnected. However, each layer perceptron 
provides an input to each of the next layer perceptrons. 
This means that each neuron transmits its output 
signal to each neuron in the next layer, which is the 
fundamental architecture of a network 
backpropagation.  

Otherwise, in CPNN several layered perceptrons 
are interconnected so that five layers are formed: two 
input layers, two output layers and one hidden layer. 
In the input layer, it is performed a pre-processing to 
prepare the input data for the calculus. This procedure 
solves problem like the saturation of the neural 
activities in front of greater quantity of input signals. 
In the hidden layer of the neural network, this layer is 
composed of a set of elements known as instars 
process. This process allows a neuron to learn by a 
new vector by adjusting the equivalent weights of the 
inputs at the moment, with a proportional rate to the 
output. 

Due to the poor features of the Lego NXT 
developer suite, which it is not capable of supporting 
the implementation of neural networks, a simple but 
reliable simulator was developed in MatLab. In this 
sense, with MatLab and their libraries GUIDE and 
SIMULINK was possible to develop the testbed for 
the Lego robot (Fig. 1). This simulator allows 
representing the physical characteristics of the robot’s 
body and their capabilities (linear and angular 
velocities). 

The simulator facilitates different configuration 
according to: 

 Type of map; 
 Selection of a neural network model; 
 # of victims; 
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the neural network models, a set of 5 scenarios with 
different configuration was designed. In particular, for 
each scenario 10,000 trials were executed. The 
preliminary results generated from such proves are 
presented in Table 1. The robot is aware about the 
number of victims defined at each experiment; 
however, the robot does not know where are the 
victims. Besides, the robots cannot leave the map 
without having “rescued” all the victims. A victim is 
rescued when the robot is positioned at their 
coordinates. According to the presented results, the 
BPNN appears to be the best option for the scope of 
this research. The improvement rate of each scenario 
is calculated by using the distance between the 
execution time of each model. 

3. Implementation on the Lego NXT Robot 

The implementation of the BPNN in Bricx 
Command Center lets put into practice the abilities of 
the Lego robot. In this sense, two controlled scenarios 
are proposed (Figs. 3 and 4) where the Lego robot 
must avoid crashing with the obstacles (represented by 
some boxes and other things) and victims are 
represented by green figures. Both scenario are totally 
unknown to the robot, and can be reconfigured by the 
robot itself, because the robot can move some of the 
objects involuntarily. The robot begins each 
experiment from a determined point. Another 
interesting aspect is related with environmental lights. 
The robot is equipped with a color sensor. With this 
device the robot can look for the victim. The use of 

this sensor is a new challenge because the degree of 
the color recognition suffered a loss of quality   
under some kind of light or when the robot moves so 
fast. To solve this, it was needed to put a patch to 
avoid the direct exposition of the sensor with external 
light. 

The ultrasonic sensor was set at 10 cm in relation 
with the basis of the scenario. This distance is to 
facilitate the identification of the objects over the 
environment.  

4. Experimental Results 

The experiments were developed over the scenarios 
aforementioned. Some of the aspects to evaluate the 
results are the following: 

ciri,vj certainty index of the robot i to rescue the 
victim j. 

timeri,vj time needed for the robot i to rescue the 
victim j. 

errorri,vjerrors of the robot i when it tray to rescue 
the victim j. 

In this sense, an error is computed when the robot 
states that has made a rescue but it is not over the 
victim. These errors can occur for different situation 
such as: the low level of the batteries of the robot or 
the color sensor cannot do a well lecture.  

In addition, the performance of the robot i to solve a 
particular victim j is calculated by the Eq. (1). 

ciri,vj= ෍ ቆ
timeri,vj+errorri,vj

timeri,vj*errorri,vj

ቇ
n

Vj=1

*Vj                (1) 

 

Table 1  Preliminary results of the validation phase.  

Scenario NN Victims Execution time (sec) Improvement rate (%) Selected NN 

1 
BPNN 

1 
57 

29.62% BPNN 
CPNN 81 

2 
BPNN 

2 
115 

19.58% BPNN 
CPNN 143 

3 
BPNN 

3 
187 

18.34% BPNN 
CPNN 229 

4 
BPNN 

4 
261 

16.34% BPNN 
CPNN 312 

5 
BPNN 

5 
337 

33.13% BPNN 
CPNN 504 
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