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Abstract: This paper presents a study where artificial neural networks are used as a curve fitting method applying measured data from 
an axial compressor test rig to predict the compressor map. Emphasis is on models for prediction of pressure ratio, compressor mass 
flow and mechanical efficiency. Except for evaluation of interpolation and extrapolation capabilities, this study also investigates the 
effect of the design parameters such as number of neurons and size of training data. To reduce the effect of noise, the auto associative 
neural network has been applied for noise filtering of the data from the parameters used to calculate the efficiency. In summary, the 
results show that artificial neural network can be used for compressor map prediction, but it should be emphasized that the selection of 
data normalisation scale is crucial for the model where compressor mass flow is predicted. Furthermore, it is shown that the AANN 
(auto associative neural network) can be used to the reduce noise in measured data and thereby enhance the quality of the data. 
 
Key words: Axial flow compressor, artificial neural networks, curve fitting, noise reduction. 
 

Nomenclature 

cP  Heat capacity 
m  Mass flow rate 
Dif  Measurement pane at compressor exit (diffuser) 
Inl  Measurement plane at compressor inlet 
P  Power 
R  Rotor/gas constant 
S  Stator 
T  Temperature (K) 
V  Volume flow 
p  Pressure 
κ  Isentropic exponent 
ρ  Density 
t  Total 
ANN  Artificial neural network 
AANN  Auto associative neural network 
GRN  General regression networks 
MLP  Multi layer perceptrons 
NN  Neural networks 
RBF  Radial basis function 

1. Introduction 

Simulation of gas turbines is important for design 

and test of gas turbine control strategies and requires 
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accurate models of the gas turbine components. The 

compressor is a critical part of the overall model and 

detailed models that incorporate the compressor 

characteristics are therefore required. In the simplest 

form, the compressor characteristics can be 

implemented in a table form but this is not well suited 

for engine simulation since the standard interpolation 

routines is not continuously differentiable. The 

compressor characteristics are expressed by the 

relationship between the pressure ratio π*,  corrected 

speed nc ටT1
*⁄ , corrected mass flow rate mcටT1

*/p1
* and 

efficiency ηc
*, where the interrelationships between the 

variables normally are referred to the compressor map 

which can be derived from the Buckingham theorem. 

The pressure ratio, corrected speed and corrected mass 

flow are parameters that can be physically measured 

while the efficiencies are so-called independent 

parameters which are calculated values using measured 

parameters. There are several different methods to 

approximate the compressor characteristics, or the 

compressor map, one is e.g. a two-dimensional linear 

interpolation as shown in Ref. [1]. In Ref. [2], a 
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generalized procedure for analytical compressor map 

prediction is outlined and later applied and presented in 

Ref. [3]. In Ref. [4], auxiliary coordinates was 

introduced which were superimposed on the 

characteristic curves to obtain the compressor 

characteristics. In Ref. [5], the authors applied 

analytical functions to nonlinear models to 

approximate the compressor map of different designs. 

Another approach was taken in Refs. [6, 7] applying 

genetic algorithms in performance model calculations 

and analytical functions for compressor map 

generation. Several studies such as Refs. [1, 8-11] have 

evaluated different neural networks for compressor 

map generation. In Ref. [11], the authors showed that 

the MLP (multi layer perceptron) when compared to 

RBFs (radial basis function networks), GRNs (general 

regression networks) and rotated general regression 

network is the most suitable neural network model to 

implement due to the high interpolation capability, but 

rather complicated networks were used with two 

hidden layers with 10 neurons in each layer, 

corresponding to a rather complex network structure. 

Application of neural network models is in addition 

evaluated in Ref. [8], where good results are obtained 

for compressor pressure ratio prediction while the 

ANN (artificial neural network) fails to predict the 

compressor mass flow, instead an analytical approach 

was adopted for mass flow prediction. Even though 

several studies report the application of ANN for 

compressor performance modelling, the existing 

literature does not provide an answer of how to develop 

and configure these models in an optimal manner as 

well as quantifying the number of required data points 

from the compressor map. 

The AANN (auto associative neural network) was 

originally proposed by Kramer [12] to deal with data 

filtering and sensor validation through nonlinear 

principal component analysis. Basically, this ANN 

model replicates the input at the output, under the 

constraint of a reduced dimension inside the model. By 

the virtue of the reduced dimension, the network is 

forced to compress the data into a lower dimension and 

thereby account for interrelationships between the 

parameters and discard the noise which should be 

uncorrelated between the parameters. Applications of 

AANN for noise-filtering from nonlinear correlated 

parameters can be found in e.g. Ref. [13], where it was 

used to improve the failure diagnostic capability of the 

gas path analysis method. 

In this study, ANNs will be used as a curve fitting 

method to approximate the compressor map. Three 

different compressor map models will be considered 

where the first predicts the pressure ratio, the second 

predicts the mass flow while the third model predicts 

the mechanical efficiency. These models are developed 

by applying measured data from an axial compressor 

research test rig. It will be shown that the ANN models 

can be developed by rather few data points from the 

compressor map and that interpolation results are 

excellent. In addition, it will be seen that extrapolation 

outside the training domain can be performed, but at 

reduced accuracy. Furthermore, it will be shown that 

the model for mass flow prediction requires an 

unconventional data normalisation which is due to 

almost vertical speed lines in this model. Noise 

reduction capability by the AANN will be investigated 

on the data used for mechanical efficiency calculation, 

and the results show that the calculated efficiency 

becomes less scattered when the data has been 

processed through an AANN. The result in this study is 

based on a data set from one compressor, but the 

modelling results can be considered as generic and be 

useful for curve fitting of data from other compressors 

with similar characteristics. 

2. The Compressor Test Rig 

The two stage axial flow compressor of the Institute 

of Jet Propulsion and Turbo Machinery of the 

University of Aachen is specially designed for the 

investigation of the effects of axial spacing on 

performance and compressor flow field [14]. Beside 

the complex design of the rig, giving the opportunity to 
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vary the axial spacing, a second major task is to equip 

the rig with measurement technique that is capable to 

resolve the minimal differences of the flow field caused 

by the variation of the axial gap. Hence, the 

measurement equipment used must have high 

measurement accuracy. A schematic illustration of the 

test rig is shown in Fig. 1. For calculating the 

performance data of the test rig, total temperature, total 

pressure and mass flow measurements are used mainly. 

For that purpose, the inlet and exit of the compressor is 

equipped with an extensive measurement plane 

consisted of total pressure and temperature 

keal-probe-rakes. These keal-probes have a wide scale 

of incidence angle of ±25°. In the inlet of the 

compressor (plane Inl in Fig. 1), there are four 

probe-rakes located around the circumference having a 

circumferential distance of 90° between each other. 

Each rake has three total pressure and one total 

temperature measurement position on different channel 

heights. The radial position of all measurement 

positions is determined by a method of centroidal axis 

and result in a higher density of measurement locations 

at the hub and tip. In total, the four rakes allocate 12 

total pressure and four total temperature measurement 

positions around the circumference in the inlet of the 

compressor rig. The exit measurement plane (Dif) is 

located 275 mm behind stator 2 (referring to nominal 

axial gap) and consists of five rakes equally distributed 

circumferentially. These keal-probe rakes are designed 

a little bit different from the ones located in the inlet. 

For increasing the density of measurement positions, 

each rake is manufactured as a twin rake. One rake 

consists of five total pressure and five total temperature 

measurement positions spread radially. In total, the exit 

plane is equipped by a matrix of 5 × 5 (= 25) total 

pressure and total temperature measurement positions. 

For performance evaluation, the pressure and 

temperature values are arithmetically averaged but also 

logged as single values. 

The mass flow rate of the compressor is calculated 

from a calibrated venturi nozzle and a density 

determination. Density is calculated by two combined 

total pressure and total temperature probes and static 

wall pressure upstream of the nozzle. The venturi 

nozzle is used for deriving the volume flow by 

measuring the differential pressure. For increasing of 

the accuracy, the static pressure of the venture nozzle is 

measured at four positions around the annulus, which 

are physically averaged by a triple T-arrangement. The 

differential pressure is measured twice, by a more 

accurate mensor and by a psi module for reference. In 

order to calculate the mechanical efficiency friction 

losses in the bearings are determined by the 

temperature difference of the oil inflow and outflow. 

 
Fig. 1  Cross-sectional view of the axial compressor including the measurement planes. 
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The temperatures are measured with Pt100. The drive 

power of the electric motor is measured by a torque 

meter. The thermal efficiency is calculated by the total 

temperature and total pressure measurements of the 

inlet and exit planes. The compressor is operated in a 

closed loop. At design speed, it delivers a mass flow 

rate of 7.7 kg/s and a pressure ratio of 1.67. During 

operation, the inlet pressure and temperature as well as 

the mechanical speed are remained constant. A more 

detailed description of the whole test facility is given 

by Ernst, et al. [15]. 

3. Measurement Accuracy and Data Set 

As described earlier in this paper, performance data 

of the compressor are used to train neural networks. 

For that purpose, performance data, mainly total 

pressure ratio and mechanical efficiency are derived 

from keal-probe-rakes in the inlet and exit of the 

compressor. Table 1 summarizes the measurement 

accuracy of measurement locations, which are 

important in the study. The uncertainty in the 

calculation of the efficiency based on the measured 

data is described by: 

∆f=ටቀ
∂f

∂x
∆x1ቁ

2
ቀ
∂f

∂x
∆x2ቁ

2
+…+ ቀ

∂f

∂x
∆xnቁ

2
     (1) 

where f is the function such as in Eq. (2). ∆x is the mean 

error of the mean value. Thus using f, a confidence 

interval can be calculated, in which the true efficiencies 

are located. Eq. (1) assumes independently and 

identically distributed zero-mean Gaussian random 

variables x. The measurement accuracies are given for 

the design point of the compressor. The higher 

accuracy of the temperature measurement in the exit of 

the compressor is due to the higher temperatures in this 

region of the engine. Eq. (2) shows how the mechanical 

efficiency is calculated. In contrast to the absolute 

measurement accuracy, the relative measurement 

accuracy does not consider systematic errors. This 

consideration is allowed if two different axial spacing 

are compared to each other using the same 

measurement equipment. 

Table 1  Measurement accuracies of different 
measurement chains. 

 Measurement position 
Accuracy 
(absolute)
(%) 

Accuracy
(relative)
(%) 

1 Pressure rakes (inlet and exit) 0.05 0.05 

2 Temperature rakes (inlet) 0.42 0.22 

3 Temperature rakes (exit) 0.18 0.08 

4 Total pressure ratio 0.02 0.02 

5 Mass flow rate 0.37 0.02 

6 Differential pressure venturi nozzle 0.01 0.01 

7 Thermal efficiency 0.78 0.18 
 

ηmech=

cp·Tinl·Vሶ Air·ቌ൬
pDif
pinl

൰

κ – 1
κ

– 1ቍ

R·T·ቀP – Vሶ Oil·∆TOil·cpOil
·ρOilቁ

           (2) 

Especially the efficiencies and determination of 

mass flow rate are affected by the systematic errors. 

For the training of the neural networks, a large data set 

is recorded in the whole area of the compressor map. In 

total, data are taken on six different speed lines (60%, 

70%, 83%, 90%, 95% and 97%) throttling the 

compressor from choke until it surged. Therefore, the 

surge line is the last stable point before real surge 

occurred. On each speed line, the compressor is 

stabilized at approximately 50 discrete points and 

performance measurements are carried out. 

4. MLPs (Multi-Layer Perceptrons) 

Feed forward multi-layer perceptrons are universal 

nonlinear function approximators which imply that 

they are able to approximate general mappings from 

one finite dimensional space to another. The 

mathematical expression of a one hidden layer neural 

network becomes: 

yk
ሺxሻ=σ ቀ∑ wji

ሺ2ሻh ቀ∑ wji
ሺ1ሻxi+wj0

ሺ1ሻD
i=1 ቁM

j=0 +wk0
ሺ2ሻቁ  (3) 

where D is number of inputs, M is number of neurons or 

basis functions and w is the different matrices and 

vectors containing the coefficients that are adjusted 

during training. Most importantly, MLPs perform 

function approximation in a very attractive and precise 

manner by using simple basis functions, normally 

represented by the tangent hyperbolic or the sigmoid 
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function, see h and σ in Eq. (3), where the numbers of 

basis functions are fixed for a given model configuration 

but the shape of the basis functions are adaptive during 

the training phase. The result is that a compact model 

with few adaptive parameters can be obtained for rather 

complicated mappings compared to other methods such 

as polynomials or RBFs where the shape of the basis 

functions are fixed. However, in contrast to polynomials 

and RBF, there is no closed form solution for calculation 

of the optimal weight values and instead an iterative 

optimisation algorithm is required which does not 

theoretically guarantee convergence. Because of this, 

several networks of the same configuration is normally 

trained with slightly different initial weight values. 

Configuration of a model for a specific set of data is 

reduced to deciding the number of basis functions in the 

model, performed by selection of number of neurons in 

the so-called hidden layer; see M in Eq. (3). Higher 

number of basis functions or hidden neurons increases 

the functional complexity that the network can 

approximate but also imply that more data are required 

to ensure generalisation. There is no theory available for 

a priori decision of the correct number of neurons. In 

practice, this is a trial and error problem where the goal 

is to have an accurate model prediction using as few 

neurons as possible. 

A second application of MLPs, apart from function 

approximation, is nonlinear principal component 

analysis through a three hidden layer configuration 

including a so-called bottleneck layer with a reduced 

dimension. This type of network is a so-called auto 

associator, trained to recreate the measurement vectors 

at the output layer as closely as possible, in a 

least-square error sense over a set of training data 

patterns. The smaller dimension in the bottleneck layer 

forces the network to learn the systematic correlations 

in the data, while exclude the random variations that 

are due to measurement noise, which is possible since 

measurement noise is uncorrelated between the  

sensors. Use of MLPs as non-linear feature extraction 

was introduced by Kramer [12] and exemplified in e.g. 

Ref. [13]. 

5. Modelling Approach 

The compressor map is approximated by training 

MLPs to reproduce the compressor characteristics 

applying the measured data. This means that the 

compressor characteristics are inherently implemented 

without any assumptions. Three different 

configurations of the compressor map and one auto 

associative model for noise reduction will be 

considered and named as follows: 

Model-I:  πc = fሺmሶ c, Ncሻ 

Model-II:  mሶ c = fሺπc, Ncሻ 

Model-III:  ηmech = fሺnc, mሶ cሻ 

Model-IV:  ηmech = fሺηmechሻ 

Models I-III are configured as regression models, i.e. 

models that predict an output based on inputs, while 

Model-IV is configured as an auto associative model, 

i.e. a model that replicates the input at the output. Each 

regression model is approximated by a one hidden 

layer MLP, using the measured data as input or output 

to the network. In Model-III, the mechanical efficiency 

is a predicted parameter, but since this parameter is 

calculated based on six measured parameters, it 

becomes affected by the systematic uncertainty in these 

measured parameters. Because of this, the measured 

parameters that are used to calculate the mechanical 

efficiency are processed through an AANN prior to 

calculation of the efficiency. The mechanical 

efficiency which is calculated with the AANN 

processed parameters is then used as the target 

parameter in Model-III. The configurations of the 

models are performed in a trial and error approach 

implemented by training several networks with 

different number of neurons in the hidden layers. In the 

regression task, the problem is condensed into deciding 

the size of number of neurons in the hidden layer, while 

in the data noise cleaning AANN task there are two 

variables to be decided, number of neurons on the 

mapping layer, which should be of the same size and 

number of neurons in the bottleneck layer. The number 
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of neurons should in all cases be selected as low as 

possible to ensure good generalization capabilities. The 

adjustable parameters, i.e. the network weights, are a 

direct function of the network weights and a thumb of 

rule is that there should be at least a few data patterns 

per weight value. Each model is trained using three 

different data sets, the training set which is used to 

numerically adjust the network weights, the CV set 

(cross validation), which is used to stop training prior 

to overtraining and finally a test which is used to 

evaluate the trained network’s performance. During 

training, the network weights are adjusted in an 

iterative process where all training patterns are first 

presented to the network and the MSE (mean square 

error) is calculated. By applying the back propagation 

algorithm, it is possible to evaluate, which weights as 

well as in what direction these should be adjusted in 

order to decrease the MSE. Adjustments of the network 

weights can be done by several different optimization 

algorithms such as the gradient descent method. 

However, in this study, the Levenberg-Marquardt 

algorithm [16] is used which is a modification of the 

Gauss-Newton optimisation algorithm. The 

Levenberg-Marquardt algorithm is faster and less 

prone to get stuck in local minima’s in the error space 

compared to the basic gradient descent algorithm. The 

learning process is repeated several steps, one step is 

called one iteration. When the learning algorithm has 

converged, i.e. additional iterations do not cause a 

decrease in the error, the optimisation procedure is 

stopped and the network weights are saved. Due to the 

possibility of being trapped in a local minimum, 

several training sessions are performed with different 

initial weight values where the best in terms of the 

lowest prediction error is used. Evaluation of the 

possibility to be trapped in a local minimum can be 

done by comparing the training results for the different 

training sessions; big difference in terms of prediction 

accuracy indicates that the model is sensitive to the 

initial weight values and additional training sessions 

might be motivated. 

6. Modelling Results 

6.1 Predicted Pressure Ratio—πc=  fሺmሶ c,Ncሻ 

The compressor map, according to Model-I, is 

trained with 206 data patterns from all speed lines. Of 

these 206 data patterns, 60% is used in the training set, 

20% in cross validation set and the remaining 20% in 

the test set. The data is linearly rescaled between ±0.8 

prior to network training to allow for extrapolation of 

the data. The number of neurons represents in some 

sense the complexity between input and output 

parameters, and in this model it can be recognized in 

Fig. 2 that three neurons are enough to approximate the 

functional complexity between the input and output 

parameters. Three neurons in the hidden layer imply 

that 13 weights are used in the network configuration, 

which gives a data pattern per weight ratio of 9.5, only 

counting the data patterns in the training data set, which 

should be enough to avoid any over-fitting in the 

network. The training phase requires a few hundred 

iterations to converge, see Fig. 3 for the model with 

three hidden neurons. 

To evaluate the interpolation capability, the network 

with three neurons in the hidden layer is retrained 

where one speed line between 97% and 60% is 

removed from the training data set at the time. The 

networks are then tested with the speed lines not used 

during training which is termed interpolation since this 

unseen speed lines during training is located inside the 

training data boundary. Fig. 4 shows the graphical 

result for speed line 95%, and in Table 2 a comparison 

between the interpolation error and training error for 

the four speed lines located between the lowest speed, 

60%, and the highest, 97%, is shown. Table 2 shows 

that the interpolation capability is excellent, since the 

difference in error is almost indistinguishable between 

the cases where the speed line data are used during 

training and in the case where it is not seen at all. To 

investigate the extrapolation capability, a neural 

network with three hidden neurons was trained with all 

speed-lines except 60% and 97%, respectively. The 
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Fig. 2  MSE as a function of hidden neurons. 
 

 
Fig. 3  Optimisation convergence with three hidden neurons. 
 

 
Fig. 4  Interpolation results for 95% speed line. 
 

Table 2  Training and interpolation average error for each 
speed line. 

Speed line Error-interpolation (%) Error-training (%) 

60% - 0.21 

70% 0.23 0.22 

83% 0.25 0.24 

90% 0.26 0.26 

95% 0.27 0.26 

97% - 0.25 
 

average error for prediction of the 60% speed line is 

0.7% and for 97% speed line 0.35%. The result is shown 

in Figs. 5a and 5b and it can be concluded that the 

extrapolation can be performed, however, as expected  

 
(a) 

 
(b) 

Fig. 5  (a) Extrapolation results for 97% speed line; (b) 
extrapolation results for 60% speed line. 
 

at reduced accuracy compared to interpolation. At least, 

the network seems to maintain the general behaviour of 

the shape of the speed line during extrapolation. The 

higher error for the 60% speed line can be explained by 

the fact that the network has to extrapolate a longer 

distance. This means that extrapolation should be, in 

the case it is necessary, applied to data close to the 

training data domain. 

The previous models were trained with the existing 

data set, where each speed line is represented by 

several measurements close to each other. The question 

may arise how many data patterns actually are needed 

to model the compressor characteristics for pressure 

ratio prediction. This is dependent on several factors 

such as number of neurons in the model, number of 

input parameters as well as the shape of the function; a 

highly nonlinear function requires a higher number of 

data patterns than a simpler one. For that purpose, two 

test cases are investigated with the goal to quantify the 

minimum number of training data. In Case-1, three 

training data patterns and two cross validation patterns 
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evenly distributed along the speed line are used, while 

in Case-2, four data patterns and three cross validation 

patterns are used. The ANN models are constructed 

with three neurons in the hidden layer which was 

previously seen as enough for the given functional 

complexity between the input and output parameters. 

In Case-1, the data pattern per weight ratio is 1.7 while 

in Case-2, it is 2.3. The remaining data are used as test 

data to verify the generalisation performance. In 

Case-1, the average error in the test data is 0.46% and 

the result is shown in Figs. 6a and 6b. 

The average error is higher than in the previous 

model where 206 data patterns were used in the 

training and it can be concluded that training data 

points are not enough to fully capture the compressor 

characteristic. However, in Case-2, see Figs. 7a and 7b, 

the average error in the test set is reduced to 0.25%, 

similar to when the 206 data patterns were used and it 

can be concluded that in this case the number of 

training data is enough to approximate the compressor 

characteristics. 

6.2 Predicted Mass Flow—mሶ c= fሺπc,Ncሻ 

The compressor mass flow is predicted based on the 

normalized speed and the pressure ratio. The part of the 

speed lines that are almost horizontal in Model-I 

become almost vertical in Model-I which imply that 

this model is much more sensitive to small differences 

in pressure ratio than Model-I in compressor mass flow. 

A first attempt was made applying the same data 

normalisation scale as in Model-I, i.e. ±0.8. As 

indicated in previous studies [11], MLPs can not 

approximate the model except by drastically increasing 

the number of neurons. To exemplify this, Fig. 8 shows 

the network compressor characteristic approximated 

with four hidden neurons. The network fails to 

especially approximate the steep part of the speed lines 

and the error in the test data, applying a normalisation 

scale of ±0.8, is 1.1%. 

This problem is related to the S-shaped transfer 

function in the neurons, the so-called basis functions. 

During training, the network weights are updated  

 
(a) 

 
(b) 

Fig. 6  (a) Case-1, training and cross validation data; (b) 
Case-1, test data. 
 

 
(a) 

 
(b) 

Fig. 7  (a) Case-2, training and cross validation data; (b) 
Case-2, test data. 
 

which changes the actual shape of each basis function 

where each basis function is used to approximate a part 
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to be determined, in this case with a data pattern per 

weight ratio of 6.6. In Fig. 11, a schematic illustration 

of the data filtering process is shown, while Figs. 12a 

and 12b illustrate the noise reduction effect by the 

efficiency calculated with raw data and the efficiency 

calculated with the AANN filtered data. The 

efficiency calculated with raw data is rather scattered, 

while the efficiency calculated with AANN filtered 

data seems to be less scattered which indicates that 

noise filtering has been performed on the data when 

processed through the AANN model. It can also be 

noticed that the highest noise filtering effect is seen in 

the area where many measurement data points are 

located which shows how the AANN noise filtering 

capability depends on redundancy in the data. Fig. 12b 
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Fig. 11  Schematic illustration of the data noise filtering 
process. 
 

 
(a) 

 
(b) 

Fig. 12  (a)  Calculated and AANN filtered efficiency, 
speed line 97%; (b) calculated and AANN filtered efficiency, 
all speed lines. 

shows the result for all speed lines and Fig. 12a shows 

for speed line 97%. For all speed-lines, it can be 

clearly seen that the AANN processed data reduce the 

noise content. Because of this, the mechanical 

efficiency is calculated based on the filtered data prior 

to training of Model-III. 

The AANN filtered data are used as the new 

training data for Model-III, where the final model 

needed four neurons in the hidden layer. The ANN 

model is trained in the same manner as the previous 

models, applying a linear data normalisation scale of 

±0.8, similar as in Model-I. The average error for the 

mechanical efficiency is 0.55%. Fig. 13 shows the 

error as a function of number of neurons in the hidden 

layer and it can be recognized that three or four 

neurons is enough to approximate the input/output 

relationship. In Fig. 14, the prediction of mechanical 

efficiency by the ANN is shown together with the raw 

measurements. Interpolation and extrapolation was 

tested in Model-I with similar results, that meant 

interpolation was performed with similar accuracy as 
 

 

Fig. 13  Mean square error as a function of neuron. 
 

 
Fig. 14  Network prediction and measured mechanical 
efficiency. 
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in training data, while extrapolation could be 

performed at slightly increased error, in the case 

where data from 97% speed line was used for 

extrapolation. The error was similar to the training 

error while extrapolation of the 60% speed line results 

in an average error of 1.2%, approximately twice the 

training data error. 

7. Conclusions 

In this study, ANN models were used as curve fitting 

tools applied to measured data from an axial 

compressor test rig. Two specific objectives have been 

investigated, the first one targeting the optimal design 

parameters for ANN model configuration and 

development with respect to interpolation and 

extrapolation capabilities while the second objective 

was to evaluate the AANN for data screening and noise 

filtering purposes. For the curve fitting purpose, three 

different models were evaluated, prediction of pressure 

ratio, mass flow and mechanical efficiency. It was seen 

that for each model the compressor map could be 

approximated by a one hidden layer MLP with 3-4 

neurons in the hidden layer, depending on the predicted 

parameter. All models revealed excellent interpolation 

capabilities and are in accordance to previous studies 

such as Ref. [8]. The compressor mass flow curve 

fitting model was the most challenging task since this 

required an unconventional data normalisation scale to 

provide acceptable data representation. Extrapolation 

was seen to be possible with acceptable results with 

Model-I and Model-III while Model-II revealed to 

provide unacceptable extrapolation prediction results. 

In summary, for compressor data curve fitting, Model-I 

and Model-III can be used for interpolation and to some 

extent extrapolation while Model-II should be restricted 

to interpolation, i.e. only be applied inside the training 

data domain. Comparing the results to similar studies, it 

was seen that simpler networks could be used than in 

Ref. [11], and the issue of mass flow prediction as 

reported in Ref. [8] is solved by applying lower data 

normalisation scale than normally used. The AANN 

was applied as a pre-processing step to filter noise in the 

measured data used for mechanical efficiency 

calculation and a clear noise reduction was seen when 

the efficiency was calculated by the filtered data instead 

of the original measured data values. Thus, the AANN 

methodology can be used as a data cleaning tool, either 

to reduce the noise content in the data or to be used to 

select representative data points. In summary, the 

results in this study show that ANN can be used to 

develop efficient differentiable numerical models of the 

compressor characteristics when the data covering the 

main part of the operating window is available. In 

addition, some results regarding required number of 

data patterns as well as the needed number of neurons in 

the hidden layer for the different models are provided 

which can be useful for ANN modelling of compressors 

with similar characteristics.  
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