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Abstract: This paper describes the design of a new kind of miniature abrading sphere, which is magnetically mounted inside a 
spherical gap and set in rotation pneumatically with air. Large eddy simulation is performed in conjunction with the compressible 
Smagorinsky model. Minimal temperature variation allows for the assumption of adiabatic walls. Fluid-solid interaction is modeled 
using the law of the wall for compressible turbulent flow. A parametric study is done to determine optimal geometric layout while 
taking physical restrictions into account. The resulting optimal configuration is then examined in detail in order to determine demands 
to be met by the computerized control of the magnetic bearing as well as to quantify the force available to the abrasion process. Finally, 
a mathematical relation is given that determines available abrasion force depending on standard volumetric flow rate and rotation 
frequency. The findings presented here provide a basis for further development of smaller versions of the tool. 
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1. Introduction 

Project GrindBall is an applied research project 

sponsored by the DFG (German Research Foundation) 

as part of the work-group SPP 1476 (small machine 

tools) involving simulation, electro-magnetic control, 

and manufacture of a miniature abrading device [1]. 

The workload in this project is hence distributed on to 

three institutes: computational simulation is conducted 

at the ZARM (Center of Applied Space Technology 

and Microgravity), the electro-magnetic control 

element is developed at the IALB (Institute for 

Electrical Drives, Power Electronics and Devices), and 

manufacture of the tool itself is undertaken by the LFM 

(Laboratory for Precision Machining). 

1.1 Motivation 

Miniaturization is of great importance in many fields 
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such as mechatronics, optics, or medicine as it enables 

new functionality or makes processes more economical 

[2]. While increasing precision has made it possible to 

produce smaller and smaller workpieces, the tools used 

to work on them have for the most part remained 

constant in size. The skewed ratio of tool size to 

workpiece size creates a growing ecological, 

economical and technical inefficiency regarding 

respective processes. Until now, miniaturizing existing 

tools was performed in order to combat this skewed 

ratio. This approach is, however, reaching its limits 

regarding technical feasibility and usefulness. For this 

reason, new innovative concepts and tools need to be 

developed in order to advance in the field of 

miniaturization. Since the ratio of surface to volume 

increases dramatically with increasing miniaturization, 

one has, proportionally, far more functional surface to 

work with as volume decreases. This effect is 

extremely useful for abrasive tools, as the control 

dynamics improve with deceasing tool size, thus also 
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improving the tools ability to adapt to particular 

machining conditions. Most abrasive tools used to 

create micro cavities suffer from the following problem: 

since the axis of rotation and its orientation to the 

workpiece are crucial in ensuring positive grinding 

results, aligning the axis of rotation is key when 

grinding a cavity. A grinding pencil, for instance, has 

its theoretical maximum effectiveness when the axis of 

rotation is parallel to the work piece. This, however, is 

not always practical since the grinding pencil’s 

mounting apparatus could touch down on to the 

workpiece. Furthermore, should the axis of rotation be 

perpendicular to the workpiece, the grinding pencil’s 

abrasion would tend to zero. This problem can be 

countered by tilting the apparatus slightly, however, 

this still delivers mediocre results at best. Fig. 1 depicts 

the problems stated along with a theoretical solution in 

which the axis of rotation is parallel to the workpiece at 

all times, thereby maximizing the tool’s effectiveness. 

It is the goal of project GrindBall to develop such a tool, 

which, in addition, combines propulsion and control 

into one single element. 

1.2 Basic Setup 

To achieve the objectives stated above, fluid driven 

propulsion is used in conjunction with a ferro-magnetic 

sphere covered with an abrasive coating. The repelling 

force of the fluid is compensated by an adjustable 

opposing magnetic force, so that the sphere is held in a 

predefined position relative to the shaft at all times (Fig. 

2). A magnetic bearing is used to control the tool by 

preventing any unwanted movement of the sphere 

while at the same time defining an axis of rotation in 

combination with the flow [3].  

The first prototype utilizes a sphere with a diameter 

of 40 mm. Throughout the duration of the project, this 

diameter is to be gradually scaled down to 1 mm, with 

surrounding elements shrinking in proportion. The 

force necessary to achieve abrasion is applied by the 

fluid flow. Due to the sphere having little mass and the 

resulting low moment of inertia, high rotational 

frequencies and an extremely high control dynamic are 

 
Fig. 1  Abrasion force depending on axis orientation. 
 

 
Fig. 2  GrindBall-basic setup. 
 

to be expected. Planning and construction of the 

GrindBall requires interdisciplinary cooperation 

between production technology, electrical engineering, 

and fluid mechanics.  

1.3 Goals 

This paper begins by introducing the equations 

governing computational simulations used in the scope 

of this project. A parametric study is performed to 

determine optimal configuration of the tool for the case 

of a 40 mm sphere. Once found, the optimal layout is 

subjected to a variety of simulations, which ascertain 

the GrindBall’s possibilities and limitations. This 

includes identifying conditions for stable and efficient 

operation of the tool, quantification of acting forces, 

and derivation of a mathematical relation governing the 

force available to the abrasion process. In addition, the 

results presented here are intended to serve as a basis 

for future development of the GrindBall, i.e. 

step-by-step miniaturization. 

2. Simulation Framework 

The following introduces the equations and models 

governing the simulations conducted for the GrindBall.  

2.1 Large Eddy Simulation 

The basic principle in LES (large eddy simulation) is 
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to differentiate between resolved scales and subgrid 

scales. The former are those, which are directly 

calculated by the governing equations while the latter 

are included by means of a statistical model. A generic 
property   is split into two separate components: 

                     (1) 

where, the overbar denotes a filtered quantity and the 

prime denotes a fluctuation. Additionally, 

density-weighted Favre filtering [4] is used for 

compressible flow: 

  


                   (2) 

which prevents having to model additional terms. In 

practice,   is unknown and hence can not be filtered. 

Instead, the filtered quantity   is taken as a result 

obtained on a finite computational grid cell. The 

information   , which is lost as it is too fine to be 

captured by the grid resolution, is subsequently 

modeled to compensate. 

2.2 Transport Equations 

The Favre filtered continuity equation is given by: 
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Conservation of energy in terms of enthalpy is given 

by: 
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2.3 Ideal Gas Law 

Pressure and density are linked using the ideal gas 

law (cp. [5]): 

RTp                   (7) 

2.4 Sutherland’s Viscosity Model 

The viscosity’s temperature dependence is 

determined using Sutherland’s viscosity model stated 

in Ref. [6]: 
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where, μ0 = 1.8325 × 10-5 kg·m-1s-1 is the reference 

viscosity of air measured at a reference temperature of 

T0 = 296.15 K and TS = 120 K is the Sutherland 

constant for air. 

2.5 Smagorinsky Subgrid Scale Model 

Modeling subgrid scale models is done using the 

compressible Smagorinsky model according to Ref. 

[7]: 

sgs Ck ksgs             (9) 

where, ksgs represents the modeled turbulent kinetic 

energy and Ck = 0.02. Modeled thermal conductivity is 

proportional to the modeled viscosity: 

sgs

sgs
sgs Pr


                 (10) 

where, Prsgs is the subgrid scale Prandtl number, here 

taken to be 0.9. 

2.6 Law of the Wall 

The Law of the Wall discussed in Ref. [5] states that 

the mean velocity at a given point in a turbulent flow is 

proportional to the logarithm of the distance between 

the point in question and the nearest wall or boundary 

layer: 

  Cyu   ln
1


            (11) 

where, uuu /
 is a dimensionless velocity, 

 /wu   is the shear velocity and w  is the 

wall shear stress. Furthermore,  /yuy 
 is a 

dimensionless distance from the wall where y  is the 

actual wall distance, made dimensionless by u  and 

the kinematic viscosity  . C  is a constant of 
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integration and   is the Von Kármán constant equal 

to 0.41. This holds for .30y  Adjacent to the wall, 

i.e., for ,5y  the velocity is given by   yu . 

For 305  y , the law relies on an approximation 

that smoothly combines the two regions. 

2.7 Simulation Setup 

Two sets of simulations are performed using the 

pressure-based compressible FVM (finite volume 

method) solver rhoPimpleFoam which is part of the 

open source CFD package OpenFOAM-2.0.1. The 

first is a parametric study which aims to determine the 

optimum geometric layout of the tool. The second 

investigates the optimum geometry and attempts to 

quantify forces acting on the grinding sphere and the 

force available to the abrasion process. Rough walls 

are neglected pending an experimental comparison 

between smooth and coated grinding spheres. 

2.8 Computational Grid 

Simulations are conducted on a single mesh 

consisting of approximate 1 million cells for the 

parametric study and on two meshes (one coarse with 

approximate 1.8 million cells and one fine with 

approximate 5 million cells) for the analysis of the 

optimal geometry. The reason for conducting the second 

part on two meshes is to save computational cost while 

still achieving accurate results. The computation is first 

run on a coarse mesh until equilibrium is reached. The 

results are then mapped on to the finer grid where the 

simulation is continued. The fine mesh is based on the 

coarse mesh, but with each cell inside the spherical gap 

refined once in each direction, thus increasing the 

number of cells inside the gap by a factor of 8. Also 

note that since the simulations involve turbulence 

modeling, equilibrium does not refer to a steady state, 

but fluctuation about a steady mean. 

2.9 Discretization Methods 

Spatial discretization is performed using the CDS 

(central differencing scheme) and temporal 

discretization is done using the Euler method. Both 

methods are described in Ref. [8]. Furthermore, 

pressure correction is performed with the PIMPLE 

method, which is an amalgamation of the SIMPLE and 

PISO methods also discussed in Ref. [8]. 

2.10 Boundary Conditions 

At the inlet, velocity is calculated based on a given 

mass flow rate. Pressure adheres to a zero gradient 

condition. Temperature is set to room temperature at 

293.15 K. μsgs and αsgs are calculated directly based on 

available data. Boundary conditions at the outlet are 

zero gradient for flow exiting the system as well as for 

pressure and temperature. Flow entering the system is 

at room temperature and obtains its velocity based on 

mass flow rate. Again, μsgs and αsgs are calculated 

directly. Static walls ensure a no-slip condition by 

enforcing a velocity of zero. Pressure and temperature 

are set to zero gradient. μsgs and αsgs are determined 

using wall functions, which ensure that the law of the 

wall is applied. The grinding sphere is a special case. 

As it is rotating, surface velocity is calculated based on 

a given rotation speed about the axis of rotation. All 

other variables adhere to the same conditions as for 

static walls. 

2.11 Forces 

The main criteria in this analysis are forces and 

moments acting on the sphere. Pressure p is calculated 

in each cell adjacent to the sphere and multiplied by the 

surface normal belonging to the corresponding cell 

face making up part of the sphere’s surface. The sum of 

the resulting vectors yields the total pressure force 

acting on the sphere: 

F p  pi ni

i1

n

                 (12) 

where, ni is the surface normal vector of the individual 

sphere boundary face i, and n is the total number of cell 

faces on the sphere. This is the discrete equivalent of 

integrating pressure over the entire surface.  

Viscous forces are calculated using the part of the 

stress tensor defined in Eq. (5) that acts on the cell face i: 
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F  ni 2  sgs
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ij
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n

        (13) 

Viscous moment is calculated by taking the cross 

product of the vector ri which points from the center of 

the sphere to the center of the cell face, with the viscous 

force: 

M   ri  ni 2  sgs
 i

S
ij 

i1

n

      (14) 

Henceforth, total forces acting on the sphere, i.e. Fp 

+ Fµ are referred to as F and the force available to the 

abrasion process is given by: 

rMF yGB ,                (15) 

where, r = 0.02 m is the radius of the sphere and Mp,µ is 

the y-component of Mµ, i.e., the moment acting about 

the axis of rotation y. 

2.12 Time Averaging 

Results are averaged over time, beginning from a 

point at which the simulation has reached equilibrium, 

according to: 

  1

tn  t0

1

2
i i1  ti1  ti 

i1

n1

     (16) 

where, n is the number of time steps in the interval. 

3. Results 

The previously discussed principles are now applied 

to a particular case, namely a pneumatically powered 

abrading sphere, the GrindBall. First, a parametric 

study is conducted in order to identify an optimal 

geometric configuration for the tool. The resulting 

optimal setup is subsequently simulated and analyzed 

in detail to determine the demands to be met by the 

magnetic bearing and the force effectively available to 

the abrasion process. Furthermore, a mathematical 

relation governing the behavior of the available 

abrasion force is derived. 

3.1 Parametric Study 

The goal of this parametric study is to make the 

GrindBall as efficient as possible while abiding to 

certain practical and physical restrictions. The sphere’s 

radius of 40 mm is considered fixed and will not be 

varied here. Furthermore, air is the only considered 

medium of pneumatic propulsion.  

An important physical restriction is the fact that the 

height of the spherical gap should not exceed 3 mm, as 

the resulting heat transfer of the magnetic bearing on to 

its surroundings would impair prolonged use of the tool. 

Momentum transfer on to the sphere should be 

maximized under these conditions while maintaining 

acceptable pressure forces, which can be easily 

countered by the magnetic control element. It should 

furthermore be noted, that the magnetic bearing 

consists of five individual magnets, four of which exert 

force on the sphere horizontally and one of which 

exerts force vertically (Fig. 3). 

Hence, the bearing relies on the weight of the sphere 

itself should the sphere be required to lower its position. 

The grinding sphere exerts a force approximately equal 

to 2.5 N in a downward direction due to its own weight. 

This force should not be overcome by any upward 

force resulting from effects the flow might have. Mass 

flow rate at the inlet is chosen such that the mean 

velocity inside the duct is approximately 230 ms-1. 

Also, a rotating sphere will not be considered during 

the parametric study, as it is not a necessary factor 

when comparing individual geometries. 

3.1.1 Variable Parameters 

There are essentially three main variable factors 

considered here. These are the height of the spherical 

gap hg in which the abrading sphere is mounted and 

where most of the momentum transfer on to the sphere 

takes place, the diameter of the duct hd which is 

responsible for introducing the pneumatic propulsion 

medium into the spherical gap, as well as the offset ho 

of the duct relative to the top of the spherical gap. The 

graphic overview can be seen in Fig. 4. Gap heights of 

2 mm, 3 mm, and 4 mm are examined with duct 

diameters also ranging from 2 mm to 4 mm. Offset is 

taken to equal to gap height for this first run. 

Neglecting cases in which duct diameter is less than the 
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Fig. 3  Magnetic bearing aligned around the grinding sphere. 
 

 
Fig. 4  Variable parameters for the parametric study. 
 

height of the gap results in six individual cases to be 

considered (Table 1). The 4 mm gap height case is 

considered here purely as a means of comparison since 

the maximum practical gap height is 3 mm as stated 

previously. 

Offset of the duct relative to the top of the spherical 

gap is then examined using the optimum configuration 

obtained from the first run for the following values: 

50%, 75%, 125%, 150%, 175%, and 200%, where the 

percentage refers to the offset’s value relative to gap 

height. 

3.1.2 Simulation Results 

The results from the first part of the parametric study 

can be seen in Fig. 5. Clearly the case with a 2 mm gap 

and a 4 mm duct delivers the best results in terms of 

momentum transfer. The 3/4 mm case follows, with 4/4 

mm and 2/3 mm closely behind. 3/3 mm and 2/2 mm 

deliver a rather poor performance by comparison. 

Forces in x-direction all display a similar average 

ranging from 0.06 N to 0.13 N. More interesting here 

are the large differences among standard deviations. 

From here on, only the top three cases are considered 

remembering that the 4/4 mm case is not practically  

Table 1  Cases considered while examining duct diameter 
and spherical gap height. 

 2 mm duct 3 mm duct 4 mm duct 

2 mm gap � � � 

3 mm gap  � � 

4 mm gap   � 
 

 
Fig. 5  Results from part one of the parametric study: 
abrasion force FGB and exerted forces Fx, Fy, and Fz (error 
bars denote standard deviation). 
 

feasible. The 3/4 mm case’s σ(Fx) is approximately half 

of that seen in the cases 2/4 mm and 2/3 mm. This 

means that the former would deliver much smoother 

performance as the force exerted does not oscillate as 

heavily about its mean. Similar observations can be 

made for Fy and Fz. Forces Fy all display an extremely 

low average as is to be expected since the geometry is 

symmetric about y = 0 and the main flow direction is 

perpendicular to the y-axis. Standard deviations again 

display varying results. Here the cases 2/3 mm and 2/4 

mm both deliver a σ(Fy) more than three times as large 

as the 0.1 N seen in the 3/4 mm case. The force Fz is not 

quite in keeping with Fx and Fy: 2/3 mm delivers the 

best result with the lowest upward force of Fz = 0.33 N 

and a standard deviation of σ(Fz) 3/4 mm and 2/4 mm 

both show values around 0.5 N for Fz. The standard 

deviation, however, of 0.34 N for 2/4 mm is more than 

double the deviation of 0.16 N seen in the 3/4 mm case. 

Despite having the largest available abrasion force, the 

2/4 mm case displays such high standard deviations 

that make in an impractical choice. The high upward 
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force Fz combined with a corresponding large standard 

deviation σ(Fz) make this configuration particularly 

problematic. Comparing 2/3 mm and 3/4 mm sees 3/4 

mm as the far better choice. While 2/3 mm shows a 

lower Fz with similar values for σ(Fz), the standard 

deviations of Fx and Fy are simply too high by 

comparison. Such highly fluctuating forces could cause 

strong vibrations, which would in turn cause the 

magnetic bearing to emit more heat while trying to 

compensate. This may impair prolonged use of the tool. 

Generally it can be said that the forces FGB, Fx, and Fz 

increase with increasing gap height for the cases in 

which duct diameter is equal to gap height. 

Furthermore, these forces increase with increasing duct 

diameter for constant gap height. Standard deviations 

of FGB show very little difference across all cases. 

Forces Fx, Fy, and Fz, however, display great variations 

in their standard deviations. The standard deviations 

seen for all cases using 2 mm gap height are far greater 

that those seen using a 3 mm or 4 mm gap. Gap heights 

of 3 mm and 4 mm are similar regarding σ(F). A 

smaller gap thus seems to promote heavier vibration of 

the sphere while a larger gap enables smoother 

operation. Varying the duct diameter at constant gap 

height shows similar results for standard deviations in 

all cases.  

The optimum case from the first part of the study 

with a 3 mm gap height hg and a 4 mm duct diameter hd 

is now subjected to a second study with varying offset. 

The offset ho is given as a percentage of hg and is 

measured as the vertical distance between the top of the 

gap and the highest point of the duct (Fig. 4).  

Cases investigated are for ho 100% ,75% ,50%} א, 

125%, 150%, 175%, 200%}. An offset higher than 

200% can not be considered since the hose would 

penetrate the outlet basin, making multiple grid cells 

occupy the same space. Again, the goal here is to 

maximize FGB while maintaining acceptable values for 

F and σ(F). Fig. 6 shows results of the study. Standard 

deviations for the individual forces are relatively 

uniform across all cases compared to the first study.  

 
Fig. 6  Results from part 2 of the parametric study: 
abrasion force FGB and exerted forces Fx, Fy, and Fz (error 
bars denote standard deviation). 
 

Hence, the absolute values of the forces and how they 

compare across cases is the focus of this second study. 

It is easily seen that the abrasion force FGB increases 

with higher offsets. This can be explained by the fact 

that the angle at flow’s point of impact on the sphere 

between the flow’s main direction and the surface of 

the sphere becomes larger as the offset increases. 

Greater viscous forces are a direct consequence of this. 

Although a maximum offset of 200% can not be 

exceeded, it is clear that there must exist an optimum 

offset beyond which abrasion force starts to drop. 

Should the angle mentioned before become 

perpendicular, viscous forces vanish, cancelling each 

other out as they are distributed uniformly in all 

directions. Inspecting the abrasion force in Fig. 6 

supports this. Regarding FGB as a function of offset ho, 

there is a clear decrease in the slope of the function as 

offset increases. Assuming FGB ≈ 0 for ho = 23 mm, the 

slope must become negative somewhere between ho = 

2hg and ho = 23 mm. This can be further investigated 

in the future for different geometries that allow for 

higher offsets. Forces Fx in x-direction clearly display a 

reduction with increasing offset. Forces are minimal 

for ho = 1.5hg and ho = 2hg. Forces Fy are similar across 

all cases while Fz shows increasing upward force with 

increasing offset. Forces Fz, nonetheless, only vary 
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between 0.43 N and 0.58 N. Based on this data, the 

optimal value for the offset is ho = 1.5hg = 4.5 mm. 

While only in third place for abrasion force, it delivers 

the lowest standard deviation across all directional 

forces Fx, Fy, and Fz. Furthermore, the force Fx is 

comparatively small. Hence, the sphere is subjected to 

the least amount of vibration with this setup, causing 

the magnetic bearing to emit less heat. Unfortunately, a 

tight manufacturing schedule did not permit for the 

second study to reach completion on time. 

Consequently, only results from the first parametric 

study could be considered which is why the following 

deals with a setup consisting of hg = 3 mm, hd = 4 mm, 

and ho = 3 mm. 

3.2 GrindBall Prototype 

The optimum configuration determined previously 

is now simulated using a variety of rotation frequencies 

and mass flow rates (Table 2). 

Forces Fx, Fy, and Fz as well as abrasion force FGB 

are investigated. Finally, a relation is established which 

states the dependency of abrasion force FGB on rotation 

frequency f and on standard volumetric flow rate VN . 

Note that VN  m / N , where ρN = 1.293 kg·m-3 is the 

standard density of air at 273.15 K and atmospheric 

pressure. This representation is preferred over the mass 

flow rate as it is a more common quantification and is 

also the unit employed by the flow meter used in 

practice. 

3.2.1 Pressure and Viscous Forces 

Fig. 7 shows forces averaged over each constant 

flow rate with error bars denoting average standard 

deviation. While magnitudes of Fx are similar for all 

flow rates, their standard deviations increase severely 

with increasing VN . A similar observation can be 

made for Fz regarding standard deviation, however, 

magnitudes of Fz also increase with rising flow rate. 

Use of the tool is not impaired by upward force for high 

flow rates as even with max (Fz + σ(Fz)) ≈ 0.8 N, the 

sphere still has 1.7 N of downward force resulting from 

its own weight at its disposal. 

Table 2  Case configurations simulated for the prototype. 

Flow rates 1 2 3 4 5 

Frequencies 0 0 0 0 0 

(Hz) 50 75 25 50 75 

   100 100 150 

Flow rates 6 7 8 9 10 

Frequencies 0 0 0 0 0 

(Hz) 50 50 50 50 200 

 100 100 100 100 400 

 200 250 300 350  
 

 
Fig. 7  Exerted mean forces Fx, Fy, and Fz averaged over 
constant volumetric flow rates. 
 

3.2.2 Analysis of Available Abrasion Force 

As seen in Fig. 8, abrasion force FGB displays a 

linear dependency on rotation rate f for constant 

standard volumetric flow rates VN
*

. This allows for a 

linear regression line to be fitted to each constant flow 

rate, which gives a mathematical approximation for the 

dependency of FGB on f.  

As is to be expected, the slope of each regression line 

is negative since the velocity gradients (and thus the 

viscous forces) between the sphere’s surface and the 

flow impacting the sphere become lower as rotation 

frequency increases. The intercept of each regression 

line corresponds to the momentum transfer for a 

stationary sphere FGB,0, i.e., the abrasion force for f = 0. 

Each null point can be interpreted as the idle rotation 

frequency f0 for the corresponding flow rate due to the 

fact that if FGB = 0, the sphere can neither accelerate 

nor decelerate. Fig. 9 shows FGB,0 and f0. To avoid 

dimensioned coefficients, the parameters FGB, f, and 
VN

*
 are made dimensionless using the radius of the 

sphere r = 0.02 m, the standard kinematic viscosity of 

air νN = 1.33 × 10-5 m2·s-1, and the standard density of 

air ρN = 1.293 kg·m-3. The resulting dimensionless 

variables are: Fכ
GB = FGB/νN

2ρN, f* = f/νN r
-2 and  
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Fig. 8  Abrasion force with fitted regression curves for each 
standard volumetric flow rate. 
 

 
Fig. 9  Force transfers for a stationary sphere (left) and idle 
rotation frequency (right). 
 

VN
*  VN /Nr . A dimensionless relation for 

momentum transfer on to a stationary sphere is thus 

given by: 

F*
GB,0 1.2198 VN

*2  5597.4383 VN
*    (17) 

A similar analysis can be done for idle rotation 

frequencies, which are extrapolated from the null 

points of the individual linear equations for constant 

standard volumetric flow rates: 

f *
0  4.2086 VN

*6/7               (18) 

3.2.3 Abrasion Force Dependency 

The relation between abrasion force Fכ
GB and 

rotation frequency f* is linear for constant volumetric 

flow rates. Furthermore, the 2D relations between 

F*
GB,0 and VN

*
 for f* = 0 and between f0

* and VN
*

 for 

FGB
 are known. A single equation relating all three 0 = כ

variables to one another can hence be obtained using 

F*
GB,0 as intercept, the ratio of F*

GB,0 to f0
* as the slope, 

and f *as the dependant variable: 

F*
GB  F*

GB,0 
F*

GB,0

f *
0

f  F*
GB,0 1 f *

f *
0









   (19) 

Hence, available abrasion force F*
GB is governed by: 

F*
GB  1.22 VN

*2  5597 VN
*  1 0.24 f * VN

*
6

7








   (20) 

Eq. (20) is of particular interest for the use of the 

GrindBall, as prior knowledge of the abrasion force 

and its behavior is required before commencing 

operation. Typically, particular materials require a 

certain amount of force. This required force could 

simply be plugged into Eq. (20), resulting in a 2D 

equation governing flow rate vs. rotation frequency. 

Thus, the flow rate can then be chosen to achieve a 

certain frequency for a given amount of force. 

4. Conclusions 

Having found a viable geometry and performed an 

extensive analysis of forces acting on the sphere, as 

well as having determined the force available for 

abrasion mathematically, the GrindBall is now ready 

for construction and subsequent operation. It remains 

to validate the results presented in this paper with 

experimental data.  Examination of this first prototype 

shows that air is not a viable propulsion medium as the 

resulting abrasion force is simply too low for industrial 

use. Hence, a fluid with a high viscosity such as oil may 

prove to be a possible future alternative since it can 

transfer far more momentum through viscous stress. 

The next step of development is an 8 mm sphere which 

will build upon this first prototype and employ 

improvements inspired by the results presented here. 

Two supplemental ducts will be introduced vertically 

from the top in order to create enough downward force 

to enable the sphere to penetrate into a workpiece. 

Pneumatic propulsion will be replaced by hydraulic 

propulsion to increase momentum transfer. Also, the 

main duct will receive a larger offset pending a further 

parametric study with the new propulsion medium. 

Upon completion of the 8 mm GrindBall, further 

miniaturization will be performed, most likely 

beginning with 4 mm and then 2 mm. Should there still 

be room for further reduction, a 1 mm grinding sphere 

could also be developed. This gradual miniaturization 

process will not only aid in making the GrindBall 



Modeling Abrasion Forces in a Pneumatically Powered Grinding Tool Using  
Compressible Large Eddy Simulation 

  

1643

viable for industrial use, but also produce a unique and 

highly effective tool in the field of “micro-grinding”. 

Hopefully this project will inspire others to develop 

new miniature tools and thus help the scientific 

community in finding new and innovative possibilities 

for machining small workpieces.  
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