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Recently in [4], the Jessen’s type inequality for normalized positive 0C -semigroups is obtained. In this note, we 

present few results of this inequality, yielding Hölder’s Type and Minkowski’s type inequalities for corresponding 

semigroup. Moreover, a Dresher’s type inequality for two-parameter family of means, is also proved. 
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Introduction  

In last few years the "Type" functional inequalities and their applications have been addressed extensively 

by several authors like [2, 6, 9]. Researchers have great interest in this field due to vast applications of these 

inequalities. In tejti, the authors have derived a Jessen’s type inequality for normalized positive 0C -semigroup 

of operators. The classical Jessen’s inequality has a wide theory of its applications in the field of inequalities 

and analysis.  

In the presented note the authors established certain applications of Jessen’s type inequality to obtain 

mean-inequalities and functional inequalities for normalized positive 0C -semigroup of operators defined on a 

Banach lattice algebra. These resultstake the form of Hölder’s type and Minkowski’s type inequalities. Then 

finally in the last section a Dresher’s type inequality is established for two-parameter family of means.  
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Preliminaries and Definitions 

In this section, we will present some definitions that will be used in the proof of our main results.  

Definition 1. A (real) vector space V  endowed with an ordering ≥ , such that it satisfies  

1O : v w≤  implies v u w u+ ≤ +  for all u v w V, , ∈ ,  

2O : 0v ≥  implies 0vλ ≥  for all v V∈  and 0λ ≥ ,  

is known as an ordered vector space ( see [8]).  

It can be readily seen that 1O  expresses the translation invariance. Therefore, it implies that the ordering 

of an ordered vector space V  can be completely determined by the positive part { 0}V v V v+ = ∈ : ≥  of V . 

In other words, v qw≤  if and only if w v V+− ∈ .  

The other property 2O , shows that the positive part of V is a convex set and a cone with vertex 0  

(mostly called the positive cone of V).  

If for any two elements v w V, ∈ , a supremum ( )sup v w,  and an infumum ( )inf v w,  can be defined, 

an ordered vector space V  becomes a vector lattice. It is understood that the existence of supremum of any 

two elements in an ordered vectorspace implies the existence of supremum of finite number of elements in V . 

Moreover, v w≥  implies v w− ≤ − , so the existence of finite infima thus implied.  

Here are a few important number of definitions  

( ) ( )
( 0) ( )

( 0) ( )

sup v v v
sup v v

sup v v

+

−

, − =| |

, =

− , = .

absolutevalueofv
positivepartofv
negativepartofv

 

Remark 2. Some compatibility axiom between norm and order is required to move from a vector lattice to a 

Banach lattice. It is considered in the following short way:  

|| || || ||v w implies v w| |≤| | ≤ .                             (1) 

The norm defined on a vector lattice is called as a lattice norm.  

Now, we are in position to define a Banach lattice in a formal way.  

Definition 3 

A Banach lattice is a Banach space V  endowed with an ordering ≤ , such that ( )V ,≤  is a vector 

lattice with a lattice norm defined on it.  

A Banach lattice transforms to Banach lattice algebra, provided u v V+, ∈  implies uv V+∈ .  

A linear mapping T  from an ordered Banach space V  into itself is positive (denoted by: 0T ≥ ) if 

( )T v V+∈ , for all v V+∈ . The set of all positive linear mappings forms a convex cone in the space ( )L V  of 

all linear mappings from V  into itself, defining the natural ordering of ( )L V . The absolute value of T , if it 
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exists, is given by  

( ) { ( ) } ( )T v sup T u u v v V+| | = :| |≤ , ∈ .  

Thus T V V: →  is positive if and only if ( ) ( )T v T v| | ≤ | |  holds for any v V∈ .  

Lemma 4. [8], PP-249 A bounded linear operator T  on a Banach lattice V is a positive contraction if and 

only if || ( ) || || ||Tv v+ +≤  for all v V∈ .  

An operator A  on V  satisfies the positive minimum principle if for all ( ) ( )v D A D A V+ +∈ = ∩ , 
Vϕ +∈ ,  

0 0v implies Avϕ ϕ〈 , 〉 = 〈 , 〉 ≥ .                            (2) 

Definition 5. A (one parameter) 0C -semigroup (or strongly continuous semigroup) of operators on a Banach 

space X  is a family 0{ ( )} ( )tZ t B X≥ ⊂  such that  

(i) ( ) ( ) ( )Z s Z t Z s t= +  for all s t R+, ∈ .  

(ii) Z(0)=I, the identity operator on X.  

(iii) for each fixed f X∈ , ( )Z t f f→ (with respect to the norm on X) as 0t +→ .  

Where ( )B X  denotes the space of all bounded linear operators defined on a Banach space X.  

Definition 6. The (infinitesimal) generator of 0{ ( )}tZ t ≥  is the densely defined closed linear operator 

( ) ( )A X D A R A X: ⊇ → ⊆  such that  

0
( ) { }tt

D A f f X lim A f exists in X+→
= : ∈ ,  

0
( ( ))tt

Af lim A f f D A+→
= ∈  

where, for 0t > ,  

[ ( ) ] ( )t
Z t I fA f f X

t
−

= ∈ .  

A Banach algebra X , with the multiplicative identity element e  is called the unital Banach algebra.   

We shall call the strongly continuous semigroup 0{ ( )}tZ t ≥  defined on X , a normalized semigroup, 

whenever it satisfies  

( )( ) 0Z t e e for all t= , > .                              (3) 

The notion of normalized semigroup is inspired from normalized functionals [7].  

Let 0{ ( )}tZ t ≥  be a strongly continuous positive semigroup, defined on a Banach lattice V. The positivity 

of the semigroup is equivalent to  

( ) ( ) 0Z t v Z t v t v V| |≤ | |, ≥ , ∈ .  
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Where for positive contraction semigroups 0{ ( )}tZ t ≥ , defined on a Banach lattice V we have;  

|| ( ( ) ) || || ||Z t v v for all v V+ +≤ , ∈ .  

The literature presented in [8], guarantees the existence of the strongly continuous positive semigroups 

and positive contraction semigroups on Banach lattice V with some conditions imposed on the generator of the 

strongly continuous positive semigroup and the very important amongst them is, that it must always satisfy (2).  

A Banach lattice V  is said to be Banach Lattice Algebra whenever for u v V+, ∈ , uv V+∈  and 

|| || || || || ||uv u v≤ .  

The theory presented in next section, is defined on normalized semigroups of positive linear operators 

defined on a unital Banach lattice algebra (UBLA) V .  

Hölder’s Type and Minkowski’s Type Inequalities 

In this section, we present several consequences of the Jessen’s type inequality for normalized positive 

0C -semigroup defined on a Banach lattice algebra V [4]. The motivation for this paper is from [3], where such 

results are proved forisotonic linear functionals. These results take the form of Hölder’s type and Minkowski’s 

type inequalities.  

Let ( )cD V  denotes the set of all differentiable convex operators V Vϕ : → .  

Theorem 1. [4] Let 0{ ( )}tZ t ≥  be the positive 0C -semigroup on V  such that it satisfies (3). For an 

operator ( )cD Vϕ ∈  and 0t ≥ ;  

( ( ) ) ( )( )Z t f Z t f f Vϕ ϕ≤ , ∈ .                            (4) 

For a strongly continuous semigroup of linear operators 0{ ( )}tZ t ≥  defined on a Banach lattice X  and 

strictly monotonic continuous operator X Xψ : → , we define the generalized mean:  

1( ) { ( ) ( )}M Z f t Z t f f Xψ ψ ψ−, , := , ∈ .                        (5) 

Theorem 2. For a normalized semigroup of positive linear operators 0{ ( )}tZ t ≥  defined on (UBLA) V  and 

strictly monotonic continuous operators V Vψ χ, : →   

( ) ( )M Z f t M Z f t f Vψ χ, , ≤ , , , ∈ ,                          (6) 

provided either χ  is increasing and 1ϕ χ ψ −=   is convex or χ  is decreasing and ϕ  is concave.  

Proof: For f V∈ , we have ( ) ( )f f Vψ χ, ∈  and therefore, ( ( )) ( )f f Vϕ ψ χ= ∈ . Thus, if ϕ  is 

convex, by Jessen’s type inequality (4) we have for f V∈ ;  
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( ( )( ( ))) ( )( ( ( )))
( )( ( ))

Z t f Z t f
Z t f

ϕ ψ ϕ ψ
χ

≤
= .

 

Hence, if χ  is increasing then 1χ −  is also increasing and we finally obtain  

1 1[ ( ( )( ( )))] [ ( )( ( ))]Z t f Z t fχ ϕ ψ χ χ− −≤  

and the assertion (6) follows. If ϕ  is concave then ϕ−  is convex and one can obtain the required inequality 

similarly.  

Definition 3. [10] Let V  be a Banach algebra with unit e . For f V∈ , we define a function ( )log f  from 

V  to V ;  

2 3

1

( ) ( ) ( )( ) ( )
2 3

n

n

e f e f e flog f e f
n

∞

=

− − −
= − = − − − − − ...∑  

for ( ) 1e f|| − ||≤ .  

In correspondence with the usual definition of generalized power means for isotonic functionals [1], we 

shall define the generalized power means for semigroup of operators, as follows.  

Definition 4. Let X  be a Banach space and { ( )}t RZ t ∈  the 0C -semigroup of linear operators on X . For 

f X∈  and t R+∈ , the genralized power mean is defined as;  

{ 1( ) ( ( )[ ]) 0 [ ( )[ ( )]] 0 (7)
r

r r
GM Z f t Z t f r exp Z t log f r/, , = , ≠ , = .  

As an application of Theorem (2), it follows as a special case that;  

( ) ( )
r sG GM Z f t M Z f t r s, , ≤ , , , − ∞ ≤ ≤ ≤ ∞.  

Lemma 5. Let 0{ ( )}tZ t ≥  be the positive 0C -semigroup defined on V  such that it satisfies (3). For a 

convex operator V Vϕ : →  and 0t ≥ , we have;  

1 1 1 1
1 1

1 1

[ ( )[ ]] ( )[ [ ]]
( )[ ] ( )[ ]

Z t f h Z t f h f h V
Z t f Z t f

ϕ ϕ
+≤ , , ∈ .  (8) 

Proof: For f V+∈  we have [ ]f Vϕ ∈ . Since V  is a lattice algebra, f k V+, ∈  implies fk V+∈ , 

therefore the set of operators defined by;  

( )[ ]( ) 0
( )[ ]f

Z t fkF t f V t
Z t f +:= , ∈ , ≥ ,  
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is a semigroups of positive linear operators satisfying ( )[ ]fF t e e= . Thus the assertion (8) follows from (4). 

  One can observe that when r  is any integer (positive or negative), the 0C -semigroup property implies 

that ( ) ( )rZ t Z rt= . While we can generalize it for r R+∈ . For example take (1 2 ) (1 2 ) ( )Z t Z t Z t/ / =  

and thus we get 1 2( ) (1 2 )Z t Z t/ = / .For r R+∈ , the generator of 0{ ( )}tZ rt ≥  is ( ( ))rA D A, . Such 

semigroups are often called rescaled semigroups. (See e.g. [4,8]).   

Next, we prove a Hölder’s type inequality for positive 0C -semigroup of operators, assuming the 

fractional powers of elements in Banach algebra exist.  

Theorem 6. Hölder’s Type Inequality For 0C -semigroups  Let 0{ ( )}tZ t ≥  be the positive 0C -semigroup 

defined on V . If 1p >  and 1
p

pq −=  so 1 1 1p q− −+ = , then if f g h V+, , ∈  and p qfg fh fgh V+, , ∈ , 

we have for 0t ≥ ;  

1 1( )[ ] [ ( )] [ ][ ( )] [ ]p p q qZ t fgh Z t gf Z t fh/ /≤ .                         (9) 

Proof: Since qfh V+∈ , we have for 0t ≥ , ( )[ ]qZ t fh V+∈ . For 1p > , (9) follows from (8) by 

substituting;  

1 1( ) p q p qf f h gh f fhϕ − /= , = , = .  

Theorem 7. Minkowski’s Type Inequality For 0C -semigroups  Let 0{ ( )}tZ t ≥  be the positive 0C

-semigroup defined on V . If 1p >  and f g h V+, , ∈  such that ( )p p phf hg h f g V+, , + ∈ , then;  

1 1( )[ ( ) ] ( ) [ ] ( ) [ ] 0p p p p pZ t h f g Z t hf Z t hg f/ /+ ≤ + , ≥ .              (10) 

Proof: For f g h V+, , ∈  and 1p > , we have  

1 1( ) ( ) ( )p p ph f g hf f g hg f g− −+ = + + +  

The assertion (10) follows by using (9).  

Dresher’s Type Inequality 

First, we introduce two-parameter family of means in the following way.  

Definition 1. Let 0{ ( )}tZ t ≥  be a strongly continuous semigroup defined on a Banach algebra X . Then the 

two-parameter family of means ( )r sB Z f t, , ,  for r s R, ∈  is defined by;  

1( )[ ]{ }
( )[ ]

r s

r
r s

r s s

Z t fB
Z t f

− , ≠ ,
, =  
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( )[ ]{ }
( )[ ]

r

r r r

Z t f logfB exp
Z t f, =               (11) 

Theorem 2. Dresher’s Type Inequality  Let 0{ ( )}tZ t ≥  be a positive 0C -semigroup defined on a Banach 

lattice algebra V . Then for f V+∈  and p q r s R, , , ∈ , we have;  

( ) ( )r s p qB Z f t B Z f t r p s q and r s p q, ,, , ≤ , , ≤ , ≤ ≠ , ≠ .     (12) 

Proof: Let p q r s R, , , ∈  such that r p s q≤ , ≤  and r s p q≠ , ≠ . When applying the known result for 
convex functions  

( ) ( ) ( ) ( )r s p q
r s p q

ϕ ϕ ϕ ϕ− −
≤ ,

− −
            (13) 

to the convex operator ( ) log ( )[ ]xx Z t fϕ = , we can obtain (12).   

We now show that (12) holds even if r s=  or p q= . To prove this we use the fact that ( )
rGM Z f t, ,  

is increasing function of r R∈ . In particular for f V+∈ ;  

1 1

( ( )[ ]) exp[ ( ) ] ( ( )[ ])s r r ss r r sZ t f Z t logf Z t f s r− −− −≤ ≤ , < .      (14) 

Apply (14) to the positive semigroup (see Lemma 5) ( )[ ]
( )[ ]

( )
m

m
Z t f g

m Z t f
Z t g := . By taking m s=  the 

right-hand inequality (14) reduces to  

( ) ( )s s r sB Z f t B Z f t s r, ,, , ≤ , , , < .  

Similarly, by taking m r=  the left-hand inequality of (14) reduces to  

( ) ( )r s r rB Z f t B Z f t s r, ,, , ≤ , , , < .  

By these two inequalities we conclude that the inequality (12) holds for r s=  or p q= .  
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