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Abstract: In this study, kinematics of the Damage Zone (DZ) or the so-called Fracture Process Zone (FPZ) which often precedes the 
crack during its propagation and characterized by few degrees of freedom (elementary movements) such as translation, rotation, 
isotropic expansion and distortion are considered. On the basis of a stress field distribution obtained by the use of a Semi-Empirical 
Approach (SEA), which relies on the Green’s functions, these driving forces corresponding to the mentioned degrees of freedom are 
formulated within the framework of the plane problem of elastostatics. Thus, expressions for translation (J), isotropic expansion (M), 
distorsion (N) and interactions effects representing the active parts of crack driving forces known as energy release rates are 
formulated in a purely theoretical context. 
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1. Introduction 

Evaluation of Energy Release Rates (ERR) for a 

single edge notch specimen containing a crack 

surrounded by a Damage Zone (DZ) is considered. 

Sufficient experimental data has been collected in the 

last decade, evidencing that in most cases, a 

propagating crack is surrounded by a severely 

damaged zone [1, 2]. This zone can reveal itself as 

microcracks, voids, slip lines, etc.. [3]. It has been 

proven that different types of material exhibit varying 

damage zone. This difference occurs only in the 

morphology of the DZ. In spite of that, there are 

similar features in all of them such as similar global 

geometry of the DZ and similar kinetics of 

development as well [4]. A number of theoretical 

models have been proposed for the description of a 

stress field and kinetics of a DZ [5]. The traditional 
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one identifies the DZ as a plastic zone and uses the 

well developed technique of the plasticity theory for 

the determination of its size, shape, energy release 

rates etc.. According to recent experimental results, 

some damage patterns do not yield any model of 

plasticity [6] and the shape of the DZ can be difficult 

to model. As an example, a cross section of an actual 

fractured specimen [7] shows that the shape of the 

damage is quite  different (Figs. 1a and 1b). Because 

of this difference, a  plasticity  critera  is not adequate 
 

    
(a)                      (b) 

Fig. 1  Plastic zone size of specimen (a) shape of plastic 
zone (elastoplastic solution); (b) distribution of damage 

through the thickness (semi-cristaline Polymer 1). 
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for damage characterization. However, elastoplastic 

solution is currently employed due to the lack of other 

approaches. In this study, a Semi Empirical Method 

(SEM) is proposed for evaluating the stress field and 

the different energy release rates. This approach is 

based on the representation of displacement 

discontinuities by means of the Green’s function 

theory [7]. It has been used by some researchers in a 

purely theoretical context [8, 9]. Herein, we suggest a 

more realistic model (arbitrary orientations of 

discontinuities rather than rectilinear ones) for which 

the result can be obtained using the experimental data 

and thus avoiding the difficulties of analytical 

solutions.  

2. Description of the Procedure 

The displacement field  x~U
~  at a point x~  

generated by a discontinuity at point 
tx~  (Fig. 2) can 

be represented for a plane problem as 
 

    
Ω

x~d x~x~Φ.xb
~

     U
~

 ,d
      (1) 

where  x~b
~   is the discontinuity displacement (or 

potential density),  x~ ,x~Φ   is the second Green’s 

tensor which is defined as the displacement response 

at the point of observation x~ due to a force dipole 

applied at the point of discontinuity x~  and the 

integration is performed along the discontinuity line 

Ω . This second Green’s tensor for a plane stress 

problem is given as follows [6]: 
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where 
xn ~

~  is the unit normal vector in the dipole’s 

direction x~ ,   is the Poisson’s ratio, E
~ is the 

unite tensor, and R
~

 is the position 

vector  x~ - x~  R
~ t .  

Experimental observations of DZ surrounding the 

main crack are considered as being an array of 

microcracks confining in all sides of the crack. The 

problem is then formulated in terms of a system of 

singular equations for the unknown densities for each 

microcrack considered. The system of equations 

represents the boundary conditions both on the array 

of microcracks and on the main-crack as well. This 

system may be derived from Eq. (1) by evaluating 

tractions and then setting them to zero on all the 

cracks considered in the system (crack surfaces are 

traction free). Besides, the conditions on the outer 

border are satisfied because of the properties of the 

second Green’s tensor. In order to avoid solving the 

system of integral equations, a semi-empirical 

procedure based on experimental results is suggested. 

At first, divide  the  area around the crack-tip into a 

 
Fig. 2  Schematic representation of the damage zone. 
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(a)                                               (b) 

Fig. 3  Schematic representation of the damage zone (a) Subdivision of the damage zone into meshes; (b) Schematic 
representation of typical square for the determination of microcracks opening density. 
 

network of small squares having N1 vertical lines and 

N2 horizontal lines as in Fig. 3a. Then, the 

displacement field  xU ~~  due to discontinuities in 

each mesh can be represented as follows; 

       



N

1k Ω

kd

k

x~d x~ ,x~Φ.x~b
~

  x~U
~

  

(3) 

where N is the number of discontinuities. Taking into 

account that for all discontinuities (Fig. 3b), Eq. (3) 

becomes: 
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For small mesh size in comparison to the size of the 

specimen, meaning  

x~Δmax  x~ - x~  , we approximate  x~ ,x~Φ   

by  x~ ,x~Φ 0  where 0x~  is the position vector of 

the center of the mesh. With that in mind along with 

the mean value theorem, Eq. (4) takes the following 

form: 
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is the concentration of discontinuities (or damage 

density). For infinitesimal squares (    N ,N 21
) 

while 
1α

xΔ  and 
2α

xΔ  approaching zero, the sum in 

Eq. (5) becomes a double integral over the entire 

damage zone in the limit. Thus, the displacement field 

due to the presence of damage may be presented in the 

following form:  

      
dV

d x~d x~C
~

 .x~ ,x~Φ  x~U
~

  (6) 

in which dV  stands for the volume of the damage 

zone. 

3. Energy Release Rates Evaluation 

Consider a Single Edge Notch (SEN) specimen as 

shown in Fig. 4 in which a crack propagates 

surrounded by a layer of damage. Experimental 

measurements of the crack opening displacement and 

the concentration of damage in the vicinity of the 

crack are needed for evaluating the different energy 

release rates. 

The work W done by an applied force F at the grips 

(x2 = H) is given as follows: 

Total UF.  =W             (7)  

where UTotal is the total displacement at the grips. This 

latest is taken as a sum of the displacement at the grips 

in the initial state (with no cracks) UI and the 

displacement  at  the  grips  due to  the  presence of the  
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Fig. 4  Size dimensions of the proposed model. 

 

damage UDZ; in other terms: 

DZITotal U + U = U               (8) 

The elastic potential energy P is given as: 

Total.F.U
2

1
- = .W

2

1
- = P          (9)  

Then, the total energy release rate A1 takes the 

following form: 

L

U
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t 2
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
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where t is considered as the specimen thickness. Since 

UI (no cracks) is independent of the crack length, Eq. 

(10) is reduced to: 

L

U
 F. 

t 2

1
  A DZ

1 





            (11) 

The displacement UDZ is an average of the 

displacement along the grips for a specimen of width 

B, 

  
 1Hx2DZ dx x~U

B

2
  U

2

    (12) 

where  xU ~
2

 is derived by the use of the 

aforementioned Eq. (6) given in Section 2. 
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Variation of DZU
~

 due to DZ growth can lead us to 

the expression of the work increment P and 

correspondingly for the elastic energy increment. 

Carrying out this procedure, expressions for active 

parts of crack driving forces J, M and N can be 

obtained. Then, the variation of the displacement UDZ 

given in Eq. (12) takes the form; 
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where
22Φ̂ ,

2b̂ ,
j2Φ̂ and 

jĈ represent the average 

expression of 
22Φ ,

2b ,
j2Φ ,

jC after integration, 

respectively. The total ERR 1A in Eq. (11) becomes by 

the use of Eq. (14); 
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The above Eq. (15) can be rewritten in a simplified 

way as; 

  tΓ  d
~

N
~

   M J  A LLL11     (16) 

where JI corresponds to the translational energy of the 

active zone, M and N are the isotropic expansion and 

distorsion energy of the active zone, respectively. 

Here, Γ correspond to the change in concentration 

(flaws and new crazes) and interaction effects (time 

dependency).  

4. Conclusions 

Theoretical expressions for translation (J), isotropic 

expansion (M), distorsion (N) representing the active 

parts of crack driving forces are formulated. It is also 

shown in a number of cases that J has a significant 

statistical distribution. It is the expenditure of energy 

into various modes of crack propagation meaning the 

translational motion of the crack with the process zone 

unchanging on one hand  and the expansion as well 

as the distorsion of the DZ on the other hand. These 

latest along with the change in concentration and 

interaction effects constitute an  important percentage 

of the total energy release rate. Besides, the distribution 

of energy into modes varies size from one experiment 
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to the other as being a loading history dependant 

quantity. 
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