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Abstract: In this study, kinematics of the Damage Zone (DZ) or the so-called Fracture Process Zone (FPZ) which often precedes the
crack during its propagation and characterized by few degrees of freedom (elementary movements) such as translation, rotation,
isotropic expansion and distortion are considered. On the basis of a stress field distribution obtained by the use of a Semi-Empirical
Approach (SEA), which relies on the Green’s functions, these driving forces corresponding to the mentioned degrees of freedom are
formulated within the framework of the plane problem of elastostatics. Thus, expressions for translation (J), isotropic expansion (M),
distorsion (N) and interactions effects representing the active parts of crack driving forces known as energy release rates are
formulated in a purely theoretical context.
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1. Introduction one identifies the DZ as a plastic zone and uses the
well developed technique of the plasticity theory for
the determination of its size, shape, energy release
rates etc.. According to recent experimental results,
some damage patterns do not yield any model of
plasticity [6] and the shape of the DZ can be difficult
to model. As an example, a cross section of an actual
fractured specimen [7] shows that the shape of the
damage is quite different (Figs. 1a and 1b). Because
of this difference, a plasticity critera is not adequate

Evaluation of Energy Release Rates (ERR) for a
single edge notch specimen containing a crack
surrounded by a Damage Zone (DZ) is considered.
Sufficient experimental data has been collected in the
last decade, evidencing that in most cases, a
propagating crack is surrounded by a severely
damaged zone [1, 2]. This zone can reveal itself as
microcracks, voids, slip lines, etc.. [3]. It has been
proven that different types of material exhibit varying

damage zone. This difference occurs only in the 3\7\\{/\
morphology of the DZ. In spite of that, there are |/ \ /JJ// 7, /\/
/

. . . /
similar features in all of them such as similar global L > JJ////

geometry of the DZ and similar Kinetics of
development as well [4]. A number of theoretical
models have been proposed for the description of a

stress field and kinetics of a DZ [5]. The traditional /\T/\ /\/W/\
a
Fig. 1 Plastic zone size of specimen (a) shape of plastic
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for damage characterization. However, elastoplastic
solution is currently employed due to the lack of other
approaches. In this study, a Semi Empirical Method
(SEM) is proposed for evaluating the stress field and
the different energy release rates. This approach is
based on the representation of displacement
discontinuities by means of the Green’s function
theory [7]. It has been used by some researchers in a
purely theoretical context [8, 9]. Herein, we suggest a
more realistic model (arbitrary orientations of
discontinuities rather than rectilinear ones) for which
the result can be obtained using the experimental data
and thus avoiding the difficulties of analytical
solutions.

2. Description of the Procedure

The displacement field 7 () at a point X
generated by a discontinuity at point X! (Fig. 2) can
be represented for a plane problem as

¢ = [ b(x)o(x,5)dx’ 1)

Q
where 5 (%) is the discontinuity displacement (or
potential density), ¢()~c,)7') is the second Green’s
tensor which is defined as the displacement response
at the point of observation X due to a force dipole
applied at the point of discontinuity X' and the

integration is performed along the discontinuity line
©. This second Green’s tensor for a plane stress
problem is given as follows [6]:
qn(z,z'){*ﬂ?{(z-v)[m-ﬁ@ 7 RE]-2%R ie’fe} )
where 7, is the unit normal vector in the dipole’s
direction X', v is the Poisson’s ratio, £ is the
unite  tensor, and R is the  position
vector(ﬁ - g)

Experimental observations of DZ surrounding the
main crack are considered as being an array of
microcracks confining in all sides of the crack. The
problem is then formulated in terms of a system of
singular equations for the unknown densities for each
microcrack considered. The system of equations
represents the boundary conditions both on the array
of microcracks and on the main-crack as well. This

system may be derived from Eq. (1) by evaluating
tractions and then setting them to zero on all the
cracks considered in the system (crack surfaces are
traction free). Besides, the conditions on the outer
border are satisfied because of the properties of the
second Green’s tensor. In order to avoid solving the
system of integral equations, a semi-empirical
procedure based on experimental results is suggested.

At first, divide the area around the crack-tip into a

Y X,
‘r A Damage zone
Microcrack
R
Main crack
2L L la L
1 7]

Fig. 2 Schematic representation of the damage zone.
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Fig. 3 Schematic representation of the damage zone (a) Subdivision of the damage zone into meshes; (b) Schematic
representation of typical square for the determination of microcracks opening density.

network of small squares having N; vertical lines and
N, horizontal lines as in Fig. 3a. Then, the
displacement field 17(55) due to discontinuities in
each mesh can be represented as follows;
7i3)=3 [5G eE, 5 ©
k=1 gk
where N is the number of discontinuities. Taking into
account that for all discontinuities (Fig. 3b), Eq. (3)
becomes:

Z[:ZZ:Z Ib (X")o(% x)f(4)

o,=1 ay=1 k=1 oK) ¢ 4
(l[(l,2

For small mesh size in comparison to the size of the
specimen, meaning

|¥' - X|>> max |4%'|, we approximate & (3',%)
by @ (% ,%) where ¥, is the position vector of
the center of the mesh. With that in mind along with
the mean value theorem, Eq. (4) takes the following

form:
E Z[: 2 (xo' )7)5(%’) Ax; Ax; (%)
where
N ~
> [BWGE)a
- k=1 .Q(k)EA
C(x')= b

Ax" Ax'
a %2

is the concentration of discontinuities (or damage
density). For infinitesimal squares (N, , N, — o)
while Ax;, and Ax;Z approaching zero, the sum in
Eqg. (5) becomes a double integral over the entire
damage zone in the limit. Thus, the displacement field
due to the presence of damage may be presented in the

following form:

040 ot

in which V,
Zone.

) C(x)ax" ()

stands for the volume of the damage

3. Energy Release Rates Evaluation

Consider a Single Edge Notch (SEN) specimen as
shown in Fig. 4 in which a crack propagates
surrounded by a layer of damage. Experimental
measurements of the crack opening displacement and
the concentration of damage in the vicinity of the
crack are needed for evaluating the different energy
release rates.

The work W done by an applied force F at the grips
(x> = H) is given as follows:

W = F. U (7
where Ur,,; is the total displacement at the grips. This
latest is taken as a sum of the displacement at the grips
in the initial state (with no cracks) U; and the
displacement at the grips due to the presence of the
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Fig. 4 Size dimensions of the proposed model.

damage Up; in other terms:

UTotal:(]I +UDZ (8)
The elastic potential energy P is given as:
P=-1.W:-1.F.UW (9)
2 2

Then, the total energy release rate 4; takes the
following form:

A] —_ 1 @ :L F aUTatal (10)
2-toL 2t oL

where ¢ is considered as the specimen thickness. Since
U; (no cracks) is independent of the crack length, Eq.

(10) is reduced to:
4, :L.F@UJ (1)

2-t oL

The displacement Up; is an average of the
displacement along the grips for a specimen of width

B,
U,, =%IU2 (x)(xZ:H ax, 12

where v, (%)

is derived by the use of the
aforementioned Eq. (6) given in Section 2.

L
Uz(%):.[@zz (x; 'xwxz)bz (x} )dx;
0
+J‘J‘V4 csz(x; -X;, X5 —xz)gj(i')df' (13)

Variation of L7DZ due to DZ growth can lead us to

the expression of the work increment 6P and
correspondingly for the elastic energy increment.
Carrying out this procedure, expressions for active
parts of crack driving forces J, M and N can be
obtained. Then, the variation of the displacement Upz
given in Eq. (12) takes the form;

%J]"%@) +£T%(x~)

a By a |, ' By a | = (14)
. oC,
3c1>228b 26,6%0, 2y
B®a BY'a BY'd

where ¢,, , b, , &, and ¢, represent the average

2j

expression of @, , b, , D, . C, after integration,

respectively. The total ERR 4, in Eqg. (11) becomes by
the use of Eq (14);
8b F .
4= — aL + EQ
The above Eq. (15) can be rewritten in a simplified
way as;

&
o

A, =|J, + Mo, 0+ Nod |+ o, (16)
where J; corresponds to the translational energy of the
active zone, M and N are the isotropic expansion and
distorsion energy of the active zone, respectively.
Here, I correspond to the change in concentration
(flaws and new crazes) and interaction effects (time
dependency).

4. Conclusions

Theoretical expressions for translation (J), isotropic
expansion (M), distorsion (N) representing the active
parts of crack driving forces are formulated. It is also
shown in a number of cases that J has a significant
statistical distribution. It is the expenditure of energy
into various modes of crack propagation meaning the
translational motion of the crack with the process zone
unchanging on one hand and the expansion as well
as the distorsion of the DZ on the other hand. These
latest along with the change in concentration and
interaction effects constitute an important percentage
of the total energy release rate. Besides, the distribution
of energy into modes varies size from one experiment
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to the other as being a loading history dependant
quantity.
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