
Journal of Control Science and Engineering 2 (2015) 91-101 
doi:10.17265/2328-2231/2015.02.004 

 

Upper Bound of Scalars in the Integer 

Sub-decomposition Method: The Theoretical Aspects 

Ruma Kareem K. Ajeena 

Babylon University, Department of Mathematics, Education College for Pure Sciences, Babil 51002, Iraq  

 
Abstract: The focal point of this paper is to present the theoretical aspects of the building blocks of the upper bounds of ISD (integer 

sub-decomposition) method defined by )()( 2222111211 PkPkPkPkkP   with   nCkk 1211 ,max and 

  nCkk 2221 ,max , where 1C  that uses efficiently computable endomorphisms j  for 2,1j  to compute any 

multiple kP  of a point P  of order n lying on an elliptic curve E . The upper bounds of sub-scalars in ISD method are presented 

and utilized to enhance the rate of successful computation of scalar multiplication kP. Important theorems that establish the upper 

bounds of the kernel vectors of the ISD reduction map are generalized and proved in this work. The values of C in the upper bounds, 

that are greater than 1, have been proven in two cases of characteristic polynomials (with degree 1 or 2) of the endomorphisms. The 

upper bound of ISD method with the case of the endomorphism rings over an integer ring Z  results in a higher rate of successful 

computations kP . Compared to the case of endomorphism rings, which is embedded over an imaginary quadratic field  DQ  . 

The determination of the upper bounds is considered as a key point in developing the ISD elliptic scalar multiplication technique. 
 
Key words: Elliptic curve cryptography, scalar multiplication, ISD method, efficiently computable endomorphism, upper bounds. 
 

1. Introduction 

For over a hundred years, mathematicians have 

used the desirable features of elliptic curves to solve a 

variety of problems. Elliptic curves serve as a 

traditional asymmetric cryptosystem, such as the RSA 

(Rivest, Shamir and Adleman). However, their 

performance found important application in security 

level [1]. 

This study presents the computation of the scalar 

multiplication kP for a point ,P which lies on an 

elliptic curve E that has a large prime order .n This 

computation is performed using a scalar k randomly 
chosen from the [1, 1] n   interval, which is the key 

to controlling the execution time in elliptic curve 

cryptosystems.  

Gallant et al. [2] initially proposed the GLV (Gallant, 

Lambert and Vanstone) method in 2001. This method 
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has been applied to special classes of elliptic curves 

which possess efficiently computable endomorphisms, 

with characteristic polynomials to compute the 

multiple kP of a point P of order n lying on an 

elliptic curves .E  Accordingly, researchers used the 

GLV method and initially failed to provide an upper 

bound on  21 ,max kk . They only produced a guided 

estimation showing that the upper bound should be 

( )O n  without demonstrating any estimation of the 

concerned constant. 

The first upper bound appeared in Ref. [3] with the 

use of a different method compared to GLV idea. In 

2003, the research gap on the bound of kernel vectors 

of the reduction map T was studied by Ref. [1], 

where T is a group homomorphism defined from a 

lattice ZZ   into group nZ  by 

)(mod),( nbaba          (1) 

for some [1, 1]n   with a prime number .n  The 

GLV decomposition with explicit constant C was 

established with the use of the following expression 
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where ( )P  is an endomorphism of E over a prime 

field ,pF whereas w and z are small fixed integer 

values (that are coefficients of characteristic 
polynomial )(mod2 nzwXX  ).  

This study analyzes the GLV method introduced in 

Ref. [2]. Two fast endomorphisms with minimal 

polynomials 
2

j jX w X z  or jX   for 1, 2j   

are used to obtain the mathematical proofs. These 

mathematical proofs are utilized to compute the upper 

bound of the ISD (integer sub-decomposition) scalar 

multiplication .kP  The sub-decomposition from 

1 2  k k k  )(mod n  with   nkkmax 21 ,  is 

clearly shown as follows: 

)(mod112111 nkkk   

and 

)(mod222212 nkkk   

Computation of the ISD scalar multiplication kP  
is given by 11 12 1 21 22 2( ) ( ),kP k P k P k P k P      
with 11 12 1{| |,| |} 1 | |max k k n   and 

21 22 2{| |,| |} 1 | |max k k n   on an ordinary 

elliptic curve or 11 12 1 1{| |,| |} 1 | |max k k w z n    

and 21 22 2 2{| |,| |} 1 | |max k k w z n   on special 

classes of elliptic curve. 

The rest of this paper is organized as follows. Section 

two reviews the mathematical background related to 

this work. Section three gives an explanation of the 

procedure of scalar multiplication through ISD 

computation method and the theoretical concept 

involved. Section four discusses the procedure used to 

fill the logical gap. The mathematical proofs used in 

determining the value C in the upper bound of the 

kernel vectors on the reduction map T for the ISD 

method are presented in two cases. Finally, the 

conclusions are given in Section five. 

2. Preliminaries: Mathematical Foundations 

Theorem 2.1: (Hasse's Theorem) [4]. Suppose 

E is an elliptic curve over a prime field .pF  Then 

ptwithtpFE ppp 2,1)(#      (3) 

where pt  is a trace of Frobenius for E  over .pF  

In other words, pt  forms as the trace of a 2 2  

matrix that works as a linear transformation on 

two-dimensional vector space formed on E over .pF  

Definition 2.2: (Rectangle Norm) [1]. The 
rectangle norm of any vector ( , ) (0,0)v x y   in 

kernel, ker ,T of the group homomorphism T can be 

defined by 

 ( , ) max ,x y x y            (4) 

Definition 2.3: (SVP (Shortest Vector Problem)) 

[5]. The SVP involves finding the shortest nonzero 

vector in lattice .L  In other words, the nonzero vector 

,v L  which minimizes the Euclidean norm v  

must be found.  

Lemma 2.4: [2]. The vector  ,0u k v 
 

has norm 

at most  21 ,max vv  In other words, 

  21 , vvmaxu              (5) 

Lemma 2.5: (Properties of the EEA (Extended 

Euclidean Algorithm)) [2]. Suppose tuples of 
variables ,i is t  and ir  are defined by 

,i i is n t r                (6) 

for ,1,...,2,1,,...,2,1,0  zmmmi with mz  . 

where,  111000 ,1,0,,0,1 rtsnrts  and 

0ir   for all i  produced by applying EEA to 

positive integers n  and .  Then these variables 

satisfy 
i. 1 0, 0.i ir r i      

ii. 1| | | |, 1.i is s i     

iii. 1| | |, 0.i it t i     

iv. 1 1| | | | , 1.i i i ir t r t n i      

Lemma 2.6: (Properties of the GEEA 

(Generalized Extended Euclidean Algorithm)) [6]. 

Suppose   jjj zsss )1(10 ,,,  ,   jjj zj tttt )1(10 ,,,   

and 0 1 ( 1), ,...,
j j jj zr r r r       are z-tuples of integers 

such that ,
j j ji i j is n t r   for 1, 2j   and 
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0,1, 2, ..., , 1, 2, ..., 1i m m m z    with z m  

obtained by applying GEEA to positive integers , .jn   

Then the elements in these z-tuples satisfy the 

following properties: 

i. ( 1) 0, 0 1
j ji ir r i z       and 1, 2.j    

ii. ( 1)| | | |, 1 1
j ji is s i z      and 1, 2.j   

iii. ( 1)| | | |, 0 1
j ji it t i z      and 1, 2.j    

iv. 1
( 1) ( 1) ( 1) .

j j j j

i
i i i ir t r t n

      

In other words, 

( 1) ( 1)| | | | , 1 1
j j j ji i i ir t r t n i z        

and 1,2.j   

3. Upper Bound of Sub-scalars in ISD 
Computation Method 

The ISD computation method [6-8] is briefly 

interpreted in this section. Assuming that pF is a 

prime field, point ( , )P x y  lies on an elliptic curve 

E  defined over a field pF which has prime order ,n  

such that the cofactor #h  ( ) /pE F n  is small, (e.g., 

1h  ). Also, suppose that the ( ),j P  with 1, 2,j   

are efficient computable endomorphisms of E and 

their characteristic polynomials jX   modulo ,n  

where j  denote the integers in the [1, 1]n   

interval and 1 2   . The case 0j   is excluded. 

However, there is only one copy of nZ inside 

( )pE F and ( )j P  are sets of points that form 

subsets of the subgroup P   of the group ( ).pE F  

The ISD method can be applied to compute kP  of a 

point P  lying on special elliptic curve group ( )pE F  

with specific value of ,p (e.g., elliptic curve group 

formed from elliptic curve 2 3:E y x ax   or 
2 3: bE y x  over prime fields with )4(mod1p  

or )3(mod1p  respectively, which has large prime 

order. The group order # ( )pE F  here is a large prime 

order since 4h  .  

The characteristic polynomials of non-trivial 

endomorphisms ,j  for 1, 2,j   defined over pF  

take the form 
2 ,j jX w X z  where jw  and jz  

are actually small fixed integers. The Hasse bound 

shown in the Hasse’s Theorem (2.1) can determine the 

bound of the order # ( )pE F
 

as shown in Eq. (3), 

which has a large prime ,n  such that ( )j jP P   

for some [1, 1] j n    for 1, 2j   and P is a point 

that has prime order n. There is only one copy of nZ  

inside ( )pE F  which has order dividing 

.n Furthermore, the parameters , 1, 2,j j   are roots 

of 
2

jX w X  jz  modulo .n  The case 0j   is 

excluded. 

A fundamental role of the ISD method lies in the 

definition of the group homomorphism given by Eq. 

(1). Supposing that kerT is a kernel of 

homomorphism ,T kerT is clearly a sub-lattice sL of 

a lattice ZZL  . Let 1 2 3 4{ , },{ , }v v v v  and 

5 6{ , }v v  be the bases in .kerT  Therefore, vectors 

1 2 3 4 5, , , ,v v v v v  and 6v  are linearly independent 

vectors and are represented as integer lattice points of 

kerT  satisfying 

 
 
  















.,

,,

,,

65

43

21

nvvmax

nvvmax

nvvmax

          (7) 

for some 0,n   where,   denotes the rectangle 

norm defined in Eq. (4). The lattice points (that is the 
vectors 2 4,v v  and 6v ) are computed by solving the 

shortest vector problem in a lattice as seen in 
Definition (2.3). The GLV generator 1 2{ , }v v  and 

ISD generators 3 4{ , }v v and 5 6{ , }v v can be computed 

by applying the EEA, as presented in Lemma (2.5) 

and the GEEA, as presented in Lemma (2.6), 

respectively. 
Every vector iv  for 1, 2,...,6i   in kerT is 

expressed as a linear combination of the vectors 

contained in a generating set. Hence, these vectors are 

written as 

 
 
 










,set generating a from,)0,(

,set generating a from,)0,(

,set generating a from,)0,(

66552

44331

2211

65

43

21

,vvk

,vvk

,vvk





 

where, .6,5,4,3,2,1,0,  iQi  Then the rounding off 

i  to the nearest integer    21β i  iic  . Let 
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2211 vcvcv  , 4433 vcvcv   and 

6655 vcvcv  , be vectors. These vectors in kerT . 

Also, let us define the following vectors 

vku  )0,(0 , v,0)(kuv,0)(ku 2211   and . 

0 1,u u  and 2u  are short vectors as proved in Lemma 

(2.4), and Lemma (3.30) in Ref. [6]. Then, 

 
 
  















.,

,,

,,

652

431

210

nvvmaxu

nvvmaxu

nvvmaxu

        (8) 

The vector 
0 1 2( , )u k k  is proved in Eq. (3.99) in 

Ref. [6]. Then 
1 2( )k k k    )(mod n  from the 

definition of homomorphism given in Eq. (1), where 

1k  and 2k  are the integers resulting from the 

decomposition of multiplier k  using the balanced 

length-two representation of a multiplier Algorithm 

(3.74) in Ref. [10]. Integer k  is decomposed using 

formula 

  .,),(

),(mod

2121

21

nkkmaxkkwith

nkkk




  (9) 

The proof of this relation is introduced in Theorem 

(3.26) in Ref. [6]. The main idea of the ISD method is 
to sub-decompose values 1| |k  and 2| |k  when their 

maximum value is not bounded by .n  Accordingly, 
decomposing 1k  and 2k again into integers 11 12,k k  

and 21 22,k k  indicates the sub-decomposition of k  

using algorithm (2) in Ref. [6, 7] of the ISD 

sub-decomposition for a scalar, 

),(mod22211211 nkkkk    

with 11 12 21 22, , ,n k k k k n    from any ISD 

generators 3 4{ , }v v  and 5 6{ , }.v v Suppose 

),( 12111 kku  , and ),( 22212 kku   

then  

  ),(mod1121111 nkkkuT   

and  

  )(mod2222122 nkkkuT   

(that have been proved in Ref. [6]). These are 

equivalent to  

    and  )(112111 (P)ψkpkPkPkpkPk 222212   . 

In other words, the ISD elliptic scalar multiplication 

is 

11 12 1 21 22 2( ) ( ),kP k P k P k P k P       (10) 

with  

     ,  and  , 22211211 nkknkk      (11) 

The performance of the scalar multiplication kP  

in Eq. (10) can be done using the computation of the 

interleavings which depends on the pre-computations 
of two endomorphisms 1 1( )P P  and 2 2( ) ,P P   

where, ( ),pP E F
1 2, [1, 1]n     and 1 2.    

Based on ISD Algorithm (10) in Ref. [6], the ISD 

method produces a 50% success rate increase in the 

kP  computation compared to the GLV method. 

4. Determining the Value for C in the Upper 
Bound for ISD Method 

This section discusses overcoming the 

indeterminacy of the upper bound of ISD method 

which focuses on the sub-decomposition of integer k  
when the decomposed values 1| |k  and 2| |k  are not 

bounded by n  on the interval  1, 1 .n   The ISD 

method [6-8] construction depends on the GLV 

method. Hence, a tuple of relations in Eq. (6) for a 

given n  and   is generated using the EEA given 

in Lemma (2.5). 

The GLV algorithm used in the ISD method defines 

index m  as the largest integer for which .mr n  

The employment of the statement defined in case (iv) 

and given in Lemma (2.5) with 1i m   indicates 
that 

1| | .mt n   Therefore, vector 1 1 1( , )m mv r t    

in kerT  has a rectangle norm bounded by .n  
Vector 2v  in the GLV generator algorithm (1) in Ref. 

[9] is the shortest between ( , )m mr t  and 

 ( 2) ( 2), ,m mr t   such that 

2 2(| ( , ) |,| ( , ) |) ,m m m mmin r t r t C n       (12) 

with an explicit value of 1C   and  , 1m mgcd r t   

and  2 2, 1.m mgcd r t    Determining the upper 

bound of these vectors depends on the manner of 
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finding the C value. The discussion that follows 

focuses on finding the C value. The application of 

ISD method that uses efficient computable 

endomorphisms ( ) jP P   of E  over a prime 

field pF  which has characteristic polynomials  

jX 
 

for 1,2j   can be proven by the following 

results. 
Theorem 4.1: Let , ,i i is t r  for 0,1, 2,..., ,i m  

1, 2, 1m m z    with z m  and ,
jis  jit  and 

jir  for 

0, 1, 2, ..., , ( 1) , ( 2) ,..., ( 1)j j j ji m m m z     

with j jz m  and 1, 2j   be tuples of variables 

resulting from EEA applied to ,n   and GEEA 

applied to , ,jn   respectively. Let m  and jm  be 

indexes defined as the largest integers for which 
, .

jm mr r n  The components ( 1) ( 1),m mr t   and 
( 1) ( 1),

j jm mr t   form the vectors 1 3,v v  and 5v  

respectively. The vector, 

1 ( 1) ( 1)( , ),m mv r t    
1 13 ( 1) ( 1)( , ),m mv r t    

2 25 ( 1) ( 1)( , ) (0,0)m mv r t     

where, 1 3 5, , .v v v kerT  
Then 

 

  













2,1,1,

,1,

)1()1(

11

jntr

ntr

jmm

mm

jj



 (13) 

where , [1, 1].j n      

Proof:  

The first part of Eq. (13) has been proven in Lemma 

(4.5) in Ref. [6]. The second part of Eq. (13) can be 

proven as follows. Recall the GEEA given in Theorem 

(3.8) in Refs. [6,11] and applied to n  and j  for 

1, 2.j   This generalization was used in ISD method 

to generate two tuples of variables 1 1 1
( , , )i i is t r  and 

2 2 2
( , , )i i is t r  such that 

jjj ijii rtns              (14) 

where, 

jjjj zmmmi )1(,...,)2(,)1(,,...2,1,0 and 1,2j  , 

with jj mz  , where ( 1)| | | |
j ji is s   for 1i   and 

for all 1,2,j  ( 1)| | | |,
j ji it t   ( 1) 0

j ji ir r    for all 
0i   and 1, 2j   in Lemma (2.6). 

The index ,jm  for 1, 2,j   of the ISD algorithm 

defines as the largest integer for which jmr n  

with 1, 2j  . Then from Statement (iv) in Lemma 

(2.6) with   ,1
j

i m   it can be found that 

nt
jm  )1(

. As a result, the kernel vectors 

1 13 ( 1) ( 1)( , )m mv r t    and 25 ( 1)( mv r 
2( 1), )mt   have 

rectangle norms bounded by .n  In addition, the 

determination of the vectors 4v  and 6v  depending 

on the selection of the shortest vectors between 

1 14 ( , )m mv r t   and 1 14 ( 2) ( 2)( , )m mv r t    and 

2 26 ( , )m mv r t  and 2 26 ( 2) ( 2)( , )m mv r t    respectively. 

The vectors 4v  and 6v  must satisfy the following 

relation, 

    
     













nCtrtrmin

nCtrtrmin

mmmm

mmmm

2222

1111

)2()2(

)2()2(

,,,

,,,
 (15) 

that corresponding to the shortness conditions given in 

Steps (4) and (9) in Algorithm (3) in Ref. [6], where 

 
 
 
  
























1,

1,

1,

1,

22

22

11

11

)2()2(

)2()2(

mm

mm

mm

mm

trgcd

trgcd

trgcd

trgcd

 

with an explicit value 1.C   

In more general, it can be rewritten Eqs. (12) and 

(15) in one form as follows 

    
     













2,1,,,,

,,,

)2()2(

22

jnCtrtrmin

nCtrtrmin

jjjj mmmm

mmmm (16) 

with an explicit value 1.C   

Now, the determination of the upper bound of these 

vectors depending on how to find the value of .C  

The following discussion focuses on finding such 

value of C. 

Let [1, 1]j n    be the root of 
 .2,1 ,)(mod  jnX j For T)( kerx,yany 

{(0,0)}, then, from definition of the group 
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homomorphism T that is given in Eq. (1), it can be 

seen 

0)(mod  ),(  nyxyx j  

so, 

)(mod  )(0 nyxyx jj   . 

Since jX   is irreducible polynomial in Z[X], 

then 

2,1for   ,  jnyx j           (17) 

This certainly leads to 

yλxjyxn jj  1,2for   ,  

 
    

   ,,  1

,1,1 

,, 

22

22

2222

yxmax

yxmax

yyxxmax

j

jj

jj













 

 ,, 
)1(

22 yxmax
n

j


 

 

so, from rectangle norm given in Eq. (4), one then has 

the following relation for any vector in kerT  which 

differs from  0,0 ,  

   ,,, 
)1(

yxyxmax
n

j


 

   (18) 

In particular, since 
1 13 ( 1) ( 1)( , )m mv r t    and 

2 25 ( 1) ( 1)( , ) {(0,0)},m mv r t kerT      so 

 
  













.1,

,1,

2)1()1(

1)1()1(

22

11





ntr

ntr

mm

mm      (19) 

Based on Eq. (4.23) that is proven in Ref. [6] and 

the relation in Eq. (19), one then rewrite 

 

  













.2,1,1,

,1,

)1()1(

11

jntr

ntr

jmm

mm

jj



 

Corollary 4.2: Let ,  ,i i is t r  for 0,1, 2,..., ,i m  

1, 2, 1m m z    with z m  and ,
j ji is t  and 

jir  

for 0,1, 2,..., , ( 1) , ( 2) ,..., ( 1)j j j ji m m m z     with 

j jz m  and 1,2j   be tuples of variables resulting 

from EEA applied to ,n   and GEEA applied to 

, ,jn   respectively. Let m  and jm  be indexes 

defined as the largest integers for which , .
jm mr r n  

The components ( 1) ( 1),m mr t   and ( 1) ( 1),
j jm mr t   

form the vectors 1 3,v v  and 5v  respectively. The 

vector 1 ( 1) ( 1)( , ),m mv r t    1 13 ( 1) ( 1)( , ),m mv r t    

2 25 ( 1) ( 1)( , ) (0,0)m mv r t     and 1 3 5, , .v v v kerT  

Then 

 

  













.2,1,1,

,1,

)1()1(

11

jzwntr

zwntr

jjmm

mm

jj

 (20) 

where , ,   j jw w z and z  are small fixed integers. 

Proof:  

The proof takes the similar pattern as used to prove 

the general case in Theorem (4.1).  

Theorem 4.3: Suppose that 















.2,1 when ,1

,1

)1(

1

jnt

nt

jm

m

j



   (21) 

Then 











.2,1 when ,1

,1

jnr

nr

jm

m

j



     (22) 

Hence 

 

  









.2,1  where,1,

,1,

jntr

ntr

jmm

mm

jj



  (23) 

where , [1, 1].j n      

Proof:. 

The first part of Eq. (23) has been proved in Lemma 

(4.6) in Ref. [6]. From the generalized Statement (iv) 

of Lemma (2.6) defined by ( 1) ( 1)| | | |
j j j ji i i ir t r t n    

for all 1i   with 1i m   and 1,2j  , then 

( 1) ( 1) ( ) ,
j j j jm m m mr t n r t n     since ( 1) jmr   and 

| |   1,2
jmt for j   are positive integers. Now, 

( 1) .
j jm mr t n 

 

So 
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.2,1for  ,
)1(




j
t

n
r

j

j

m

m        (24) 

But ( 1)| | / 1 | |,
jm jt n     from the second part 

of Eq. (21). Therefore 

nt

j

m j






11

)1(

          (25) 

The substitution of the relation in Eq. (25) in Eq. 

(24) leads to 

j

j

m n
n

nr
j







 1
1

     (26) 

Now, since ( 1)| | | |,
j j jm m mr n t t    from the 

generalized Statement (iii) of Lemma (2.6) then 

j jm mr t  

and from the relation in Eq. (26), yields the following 

relation 

| | 1 | |.
j jm m jt r n     

Thus 

   
 

,1

, 

.2,1for  ,, ,

j

m

mm

mmmm

n

r

trmax

jtrmaxtr

j

jj

jjjj









  (27) 

Therefore, from Eq. (4.27) proven in Ref. [6] and 

Eq. (27), it can be written 

 

  









.2,1  where,1,

,1,

jntr

ntr

jmm

mm

jj



 

Corollary 4.4: Suppose that 















.2,1,1

,1

)1(

1

jzwnt

zwnt

jjm

m

j

 (28) 

Then 











.2,1,1

,1

jnzwr

nzwr

jjm

m

j

   (29) 

Then one has the following relations, 

| ( , ) | 1 | | ,

| ( , ) | 1 | | , 1, 2,
j j

m m

m m j j

r t w z n

r t w z n j

    


       

 (30) 

where, , ,jw w z  and jz  are small fixed integers. 

Proof:  

The proof takes the similar way that is used to 

prove the general case in Theorem (4.3).  

Theorem 4.5: Assume that 















.2,1for  ,1

,1

)1(

1

jnr

nr

jm

m

j



    (31) 

Then 















.2,1for  ,1

,1

)2(

2

jnt

nt

jm

m

j



    (32) 

hence, 

 

  













.2,1,1,

,1,

)2()2(

22

jntr

ntr

jmm

mm

jj



(33) 

where, , [1, 1].j n      

Proof: 

The first part of Eq. (33) has been proved in Lemma 

(4.7) in Ref. [6]. 

To prove second part of Eq. (33), suppose 

( 1) ( 1)| | | |
j j j ji i i in r t r t    for all 1i   with 

2i m   and 1,2,j   is the generalized statement 

given in (iv) of Lemma (2.6). 

Then, 

( 1) ( 2) ( 2) ( 1) ,
j j j jm m m mr t n r t n       since ( 2) jmr   

and ( 1)| |
jmt   are positive integers. 

Now, ( 1) ( 2) .
j jm mr t n    So, 

( 2)
( 1)

| | .
j

j

m
m

n
t

r


          (34) 
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But ( 1) / 1 | |,
jm jr n     from the second part 

of Eq. (31). Therefore 

( 1)

1 | |1
.

j

j

mr n






            (35) 

The substitution of the relation in Eq. (35) in Eq. 

(34) leads to 

.1
1

)2( j

j

m n
n

nt
j








  (36) 

Now, the relation, 

1.2for    1, )2()2(   jntr jmm jj
 , 

in the second part of the statement (33) can be proven 

as follows. 

Let 
( 1) / 1 | |

jm jr n     and 

nt jm j
 1)2(

, as given in the second parts of 

the Eqs. (31) and (32) respectively. For all 

1  2i with i m    and 1, 2,j   then 

( 1) ( 1)| | | |
j j j ji i i ir t r t n   . 

Therefore, 

( 2) ( 1) ( 2)
( 1)

1
( | |).

| |j j j

j

m m m
m

r n r t
t  



      (37) 

Since ( 1)| | / 1 | |
jm jt n     from the second part 

of Eq. (21) in Theorem (4.3), therefore, 

( 1)

1 | |1
.

| |
j

j

mt n






             (38) 

Thus, it can be rewritten Eq. (37) to become 

).(
1

)2()1()2( jjj mm

j

m trn
n

r  





 

Since ( 2)| | ,
jmt n   then ( 1) ( 2)| | .

jm mn r t n    

Therefore, 

.1)(
1

)2( nn
n

r j

j

m j








 

And, from the second part of Eq. (32), 

nt jm j
 1)2(

,  

Hence, 

  ntr jmm jj
  1, )2()2(

.   (39) 

From the relations in Eqs. (4.32) in Ref. [6] and Eq. 

(32), it can be written as, 















.2,1for   ,1

,1

)2(

2

jnt

nt

jm

m

j



 

Hence, it is possible to find 

 

  













.2,1for   ,1,

,1,

)2()2(

22

jntr

ntr

jmm

mm

jj



 

Corollary 4.6: Assume that 















.2,1for   ,1

,1

)1(

1

jzwnr

zwnr

jjm

m

j

  (40) 

Then, 















.2,1for   ,1

,1

)2(

2

jnzwt

nzwt

jjm

m

j

  (41) 

Hence, 

 

  













.2,1for   ,1,

,1,

)2()2(

22

jnzwtr

nzwtr

jjmm

mm

jj

 

where, , ,jw w z  and jz  are small fixed integers. 

Proof:  

In similar way, it can be proved that this corollary 

depends on the proof of general case which has been 

proved in Theorem (4.5). 

The following result finds the value of C and 

determines the upper bound for computing any ISD 

scalar multiplication .kP  Finding the value 

C depends on two cases, these have been proved in 

Theorems (4.3) and (4.5) and also depends on the 

relation proven in Theorem (4.1). 
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Theorem 4.7: Let 2 4,v v  and 6v  be linear 

independent vectors such that a vector 2v  is a shorter 

vector between ( , )m mr t  and 2 2 4( , ),m mr t v   is a 

shorter vector between 1 1
( , )m mr t  and 

1 1( 2) ( 2)( , )m mr t   and 6v  is a shorter vector between 

2 2
( , )m mr t  and  

2 2( 2) ( 2), .m mr t   If these vectors 

satisfy the following relations, 

    
     













.2,1,,,,

,,,,

)2()2(

22

jnCtrtrmin

nCtrtrmin

jjjj mmmm

mmmm  

Then, the admissible value for C is 












iondecomposit-sub ISDfor ,2,1with ,1

,iondecomposit GLVfor ,1

j
C

j

 (42) 

In particular, any multiple kP can be decomposed 

as in Eq. (10) with 

 
 
  
















.1,

,1,

,1,

22221

11211

21

nkkmax

nkkmax

nkkmax







     (43) 

where, 1 2, , [1, 1].n       

Proof: 

First, it requires to prove the values of C as 

defined in Eq. (42). The value of C for GLV 

decomposition given in the first part of Eq. (4.38) is 

proven in Theorem (4.8) in Ref. [6]. So, the value of 

C as defined in second part of Eq. (42) can be proven 

as follow. Theorem (4.3), yields the following 

relation, 

 

  









.2,1  where,1,

,1,

jntr

ntr

jmm

mm

jj



 

And from Theorem (4.5), 

 

  













.2,1,1,

,1,

)2()2(

22

jntr

ntr

jmm

mm

jj



 

Then the last two relations yields, 

    
     













.2,1,1,,,

,1,,,

)2()2(

22

jntrtrmin

ntrtrmin

jmmmm

mmmm

jjjj


 (44) 

The comparison between equations, 

    
     













.,,,

,,,,

)2()2(

22

nCtrtrmin

nCtrtrmin

jjjj mmmm

mmmm  

for 1, 2,j   as defined in the hypothesis with the 

relation in Eq. (44) finds the value of C as given in 

Eq. (42). 

Now, there is need to prove any multiple kP  

decomposed as ISD elliptic scalar multiplication 

defined in Eq. (10) with the conditions in Eq. (43). 

Since, 








.2,1for  ,

,

jX

X

j


        (45) 

are irreducible polynomials in Z[X], 








.2,1for  ,

,

jnyx

nyx

j


       (46) 

as shown in Eqs. (4.24) in Ref. [6] and Eq. (17) 

respectively. 

The inequalities, in Eq. (46), satisfy the following 

relations, 

 

  



















.2,1for  ,
1

,

,
1

,

j
n

yxmax

n
yxmax

j

    (47) 

depending on the relations given in Eq. (4.25) in Ref. 

[6] and Eq. (18) respectively. Obviously,  

 

  













.2,1,1,

1,

)1()1(

11

jntr

ntr

jmm

mm

jj



 

through the relation (13) as proven in Theorem (4.1), 

and   111 ,   mm tr ,   3)1()1( 11
,   mm tr and 

  5)1()1( 22
,   mm tr . 

Since 0 1 2( , )u k k  from Eq. (3.99) 1 11 12( , )u k k  

and 2 21 22( , )u k k  from Eqs. (3.121) and (3.122) in 
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Ref. [6], then )(mod21 nkkk  . Because 

)(mod112111 nkkk  and )(mod222212 nkkk   

as shown in Eq. (3.123) in Ref. [6]. Therefore, the 

scalar k can be rewritten as 

)(mod2222111211 nkkkkk   .The expressions 

of 1k and 2k are equivalent to 

)(112111 PkPkPk   and )(222212 PkPkPk  . 

It is more clearer to see, from inequalities defined by 






























nu

nu

nu

2

2

2

65
2

43
1

21
0







 

and from Eqs. (9) and (11). Then 

 
 
  















.,

,,

,,

2221

1211

21

nkk

nkk

nkk

 

Since ,n C n  then 11 12| ( , ) |  k k n C n   

and 21 22| ( , ) | .k k n C n    

Now, from definition of rectangle norm given in Eq. 

(4),   nCkkmaxkk  ),(, 12111211  and 

  nCkkmaxkk  ),(, 212212221 . 

Finally, from Eq. (42) to compute ,C  

 
 
  
















.1,

,1,

,1,

22221

11211

21

nkkmax

nkkmax

nkkmax







 

where 1 2, , [1, 1].n      

Corollary 4.8: Let 2 4,v v  and 6v  be linear 

independent vectors such that vector 2v  is a shorter 

vector between  mm tr ,  and  22 ,   mm tr , 4v  is 

shorter vector between  
11

, mm tr   and 

 
11 )2()2( ,   mm tr  and 6v  is shorter vector between 

 
22

, mm tr   and  
22 )2()2( ,   mm tr . If these vectors 

satisfy the following relations, 

    
     




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)2()2(

22

nCtrtrmin

nCtrtrmin

jjjj mmmm

mmmm  

for 1, 2,j   then, the admissible value for C  is 












iondecomposit-sub ISDfor  ,1

,iondecomposit GLVfor  ,1

jj zw

zw
C   (48) 

for 1, 2.j   In particular, any multiple kP  can be 

decomposed as in Eq. (10) with 

 
 
  






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   (49) 

where, , ,   1, 2j jw z w and z with j   are small fixed 

integers. 

Proof:  

The proof is similar to that used to prove the 

general case in Theorem (4.7).  

5. Conclusions 

This paper introduces an accurate analysis of the 

ISD method that optimizes and proves upper bounds 

of the kernel vectors on the ISD reduction map. These 

bounds determine the values of C that are greater 

than 1 ( 1 | |jC    where [1, 1]j n    that is for 

endomorphism rings ( )End E over Z or 

1 | |j jC w z    with jw
 

and jz  as small fixed 

integers for the endomorphism rings ( )End E over an 

imaginary quadratic field Q[ D ]). Analytical results 

proved embedding ( )End E into Z and ( )End E into 

an imaginary quadratic field Q[ D ], with D  

discriminant of a quadratic characteristic polynomial. 

The new improved value of 1 | |jC    in upper 

bound of ISD computation method that uses 

endomorphism rings ( )End E  over Z increases the 

percentage of successful computation kP  within the 

interval [1, 1]n   compared to the value of 

1 | |j jC w z    in upper bound of ISD 
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computation method that uses endomorphism rings 

( )End E over imaginary quadratic field Q[ D ]. 
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