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Abstract: Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression 
models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter 
estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is 
Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC 
(Marcov Chain Monte Carlo) algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the 
limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is 
used to calculate the Bayes estimator for the parameters of picewise linear regression models. 
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1. Introduction 

Piecewise linear regression models are a model that 

is often used in many fiels. For example, it is used in 

the field of econometrics [1], geophysics [2], health 

[3], and ecology [4]. In the field of econometrics, 

piecewise linear regression models used to model the 

commission. For example, a company pays a 

commission to the sales clerk. The company was paid 

a commission based on the sales in a way such that up 

to a certain level, called the threshold one and after a 

commission structure on top of earlier structures 

commissions. 

If the piecewise linear regression models are 

matched against the data, then the model parameters 

are generally unknown. There are many piecewise 

linear regression models. In this paper, the error 

distribution for each piece will be assumed and has the 

gaussian distribution with mean 0 and variance 2 .  

For nt ,,2,1  , let ty  be a dependet variable 
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and let tx  be independent variable. Then the 

piecewise linear regression models can be written in 

the following equation:  
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Fig. 1 shows the graph of the four piecewise linear 

regression. 

In the above equation: (a) k  is the number of 

threshold point, (b) )()(
1
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corresponding threshold, (c) )()(
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Fig. 1  Four piecewise linear regression.  
 

the pamameter of the piecewise linear regression 

models above, then  
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Suppose n21 x,,x,x   are a random sample 

drawn from a population having a piecewise linear 

regression models. Based on the random sample, the 

main problem is how to estimate the parameters θ. 

Parameter θ is estimated using Bayesian method. The 

study of the Bayesian method can be found in the 

literature, for example [5]. Parameter estimation using 

the Bayesian method can not be determined 

analytically because the likelihood function for the 

parameter θ has a complicated shape. To overcome 

these problems, in this study Reversible Jump MCMC 

Algorithm is used.  

2. Maximum Likelihood Function 
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density function as follow: 
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By using variable transformation 
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that the density function of yi is  
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Finally, the maximum likelihood function for 
),,,( 21 nyyyy   is as follow: 
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3. Prior Distribution 

To obtain the posterior distribution, first it must be 

determined the prior distribution of parameter  

),,,,( )(2)()()1( kkkkk   , 

as follow [6]: 
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Let ),,,,( badc   is hyperparameter of the 

prior distributions. Generally this hyperparameter is 
unknown. Furthermore hyperparameter   viewed as 

a random variable with a certain distribution, i.e.: 
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the prior distribution of ),(   can be determined as 

follows 
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4. Posterior Distribution 

Suppose ),( y  is a posterior distribution for 

 . By using Bayes theorem ),(  , then the 

posterior distribution for the parameter ),(   can 

be expressed as the product of the likelihood function 

and the prior distribution 
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5. Reversible Jump MCMC Algorithm 

Suppose ),( M . In general, The MCMC 

algorithm is a method of sampling to make a 

homogeneous Markov Chain mMMM ,,, 21   that 

satisfies aperiodic and irreductibel [7] such that 

mMMM ,,, 21   can be considered as a random 

variable whose distribution ),( y . Thus 

mMMM ,,, 21   it can be used to estimate 

parameters M. To realize this, the Gibbs algorithm is 

adopted [7] which consists of two phases :  

(1) Simulate ),( y  

(2) Simulate ),( y  

Distribution ),( y  has an axplicit form, so 

that the Gibbs algorithm can be used to simulate the 

distribution of ).,( y On the contrary, the 

distribution ),( y  has not an explicit form. So 

the exact simulation is possible. The solution is to use 
a hybrid algorithm consisting of three stages as 
follows :  

(2.1) Simulate ),,,( )()(2 yk kk   

(2.2) Simulate ),,( )( yk k   

The distribution ),,,( )()(2 yk kk   has the 

form explicit, so that the Gibbs algorithm can be used 

to simulate ),,,( )()(2 yk kk  . On the contrary, 
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because the value k is not known then the MCMC 
algorithm can not be used to simulate the distribution 

),,( )( yk k  . Here, reversible jump MCMC 

algorithm [8] is used to simulate ),,( )( yk k  . 

Let ),(  k  is the actual point of the Markov 

chain. There are three types of transformations are 

used, namely: the birth of the threshold point, the 

death of the threshold point and the change of the 

threshold point. Further suppose that kN  is the 

probability of transformation from k to k + 1, kD  is 

the probability of transformation from k + 1 to k, and 

kP  is the probability of transformation from k to k.  

5.1 Birth/Death of the Threshold Point  

The transdormstion of the birth of the threshold will 

change the number of threshold point, from k to the k 

+ 1. If the birth of the threshold is selected, then the 

birth of the threshold from a point ),(  k  is 

defined in the following way: Choose a random point 

z in the   \1,,1 n . Suppose the point z in the 

 1,,1 1  ii   . Next, create a new point 

),1(*   k  with 

1 , ..., i , 
zi 1

, 2i , ..., 2k  
Otherwise, the transdormstion of the birth of the 

threshold will change the number of threshold point, 

from k + 1 to the k. If the death of the threshold is 

selected, then the death of the threshold from a point 

),1(*   k  is defined in the following way: 

Choose randomly a point in  . Suppose then that 

point is 1i . Next, create a new point ),(  k  

with 

1 , ..., i , 2i , ..., 1k  
Suppose that na  and da  are respectively a 

probability of acceptance for birth and death. Then the 

probability of acceptance for birth is as follows: 
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While the probability of death is as follows: 
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5.2 Change of Threshold Point 

The transformation of the change of threshold will 

not change the number of threshold point, but this 

transformation will change the position of the 

threshold point. If the change of the threshold is 

selected, then the change of the threshold point from a 

),(  k  is defined in the following way: Choose a 

random point in  . Suppose that point is i . Next, 

create a new point ),(*  k  where this point i  

is replaced with z generated from the uniform 

distribution on the set   \1,,1 n .  

Let pa  is the probability of acceptance to the 

change. Then the probability of acceptance for change 

is as follows: 
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6. Conclusion 

The purpose of this study is to examine how to 

estimate the parameters of piecewise linear regression 

models when the number of regression is unknown. If 

the number of regression is unknown, the estimated 

parameters cannot be done by Markov chain Monte 

Carlo algorithm.  

The reversible jump Markov chain Monte Carlo 

algorithm is one of the new methods that can be used 

to estimate the parameters of piecewise linear 

regression models although the number of regression 

is unknown. The advantages of this method are both 

the number of regression and the estimation of 

parameter of linear regression models per piece which 

can be estimated simultaneously. 
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