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Abstract: Wise decision-making on resource allocation and intervention targeting for soil management cannot rely solely on trial 
and error methods and field observations used by small-scale farmers: cost-effective soil fertility survey methods are needed. This 
study aimed to test the applicability of infrared spectroscopy (IR) as a diagnostic screening tool for making soil fertility 
recommendations in small-scale production systems. Soil fertility survey of 150 small-scale groundnut farms in western Kenya was 
conducted using a spatially stratified random sampling strategy. Soil properties examined were pH in water (pHw), total carbon (C), 
total nitrogen (N), extractable phosphorus (P), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and texture. These 
properties were calibrated to mid-infrared (MIR) diffuse reflectance using partial least square regression (PLSR). Cross-validated 
coefficient of determination (r2) values obtained from calibration models were > 0.80 for all properties, except P and K with 0.66 and 
0.50 respectively. Soil nutritional deficiencies were evaluated using critical nutrient limits based on IR predictions and composite soil 
fertility indices (SFIs) developed from the soil properties using principal component analysis. The SFIs were calibrated to MIR soil 
spectral reflectance with cross-validated r2 values > 0.80. The survey showed that 56% of the groundnut farms had severe soil 
nutrient constraints for production, especially exchangeable Ca, available P and organic matter. IR can provide a robust tool for farm 
soil fertility assessment and recommendation systems when backed up by conventional reference analyses. However, further work is 
required to test direct calibration of crop responses to spectral indicators and to improve prediction of extractable P and K tests. 
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1. Introduction  

Soil fertility degradation is a major biophysical 
cause of food insecurity, and a major driving factor 
leading to abject poverty in sub-Saharan Africa (SSA) 
[1]. Human-induced soil degradation is reported to 
have affected 15% of global land area [2] and 65% of 
Africa arable soils [3]. Western Kenya supports one of 
the densest rural agricultural populations in the world 
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as a result of large initial settlements attracted by the 
originally fertile soils in the area [4]. However, 
population growth and continuous, low input cropping 
has led to steadily declining soil fertility in the area [4, 
5].  

Decline of groundnut yields on small-scale farms of 
western Kenya has been attributed to soil fertility 
degradation as one of the main factors [6, 7]. 
Groundnut is an important food, feed and cash crop in 
many countries in SSA. Africa accounts for 40% of 
the world groundnut area but produces only 25% of 
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world total because yields are low [8, 9]. The grain 
legume crop contributes to food security and soil 
fertility replenishment through biological nitrogen 
fixation. Contributions of groundnuts to nutrient 
replenishment through biological nitrogen fixation, 
has been estimated using nitrogen isotope (N15) data, 
as about 40 kg N ha-1[10]. In most SSA countries, 
women predominantly grow and manage groundnuts 
hence groundnut cultivation has a direct bearing on 
the overall economic, nutritional and livelihood of 
women and children.  

The small-scale groundnut farming systems are 
characterized by low use of mineral fertilizers and 
poor soil fertility management systems, leading to 
declining crop yields [11]. Nutrient depletion on the 
farms is due to crop harvests, removal of crop residues, 
leaching, erosion and lack of soil sufficient nutrient 
replenishment [4, 12, 13]. Knowledge on nutrient 
constraints in groundnut production systems is limited 
compared to staple crop production (such as maize) in 
Western Kenya [6]. The knowledge on nutrient 
depletion, dynamics and management on small-scale 
groundnut farms is an important pre-requisite for 
designing integrated approaches for effective and 
sustainable soil nutrients management in small-scale 
production systems [14].  

In SSA, national soil fertility monitoring systems 
are insufficient, in part, due to high costs and labour 
demands for conventional soil diagnosis based on wet 
chemistry methods [12]. According to existing 
farming practice, small-scale farmers often lack 
information and have limited access to information on 
integrated nutrient management approaches that are 
based on empirical evidence of nutrient constraints. 
As a result, farmers use trial and error methods, and 
indigenous knowledge systems as diagnostic tools 
[15]. This is often not enough as a decision support in 
small-scale farming, which requires detailed 
information on soil nutrient management as well as 
integrated soil fertility management options [5, 13]. 
However, the diagnosis of soil nutritional constraints 

requires soil analysis by conventional laboratory wet 
chemistry methods and these services are expensive 
for large-scale application by national soil survey and 
small-scale farmers. There is need for inexpensive and 
rapid analytical methods.  

Establishment of rapid, reliable and low cost 
analytical tools and techniques for assessing soil 
nutritional constraints has been identified as a priority 
for African governments in a review commissioned by 
a New Partnership for Africa Development (NEPAD) 
[16]. Infrared (IR) spectroscopy has attracted interest 
among soil scientists as a possible technique for 
improved soil analyses, providing rapid, 
non-destructive, cheap measurements as well as 
possibilities to determine several soil properties 
simultaneously [17-19]. Infrared (IR) spectroscopy 
analysis is based on the interaction of IR light with 
matter. Infrared is part of the electromagnetic 
spectrum and its divided into three main regions 
according to wavelength; near infrared (NIR) 
12,500-4,000 cm-1, mid-infrared (MIR) 4,000-400 
cm-1 and far infrared less than 400 cm-1. The 
characteristic of IR light gives distinctive properties 
that correlate uniquely with properties of matter [20]. 
The shape of IR spectra responds to organic matter, 
mineralogy, and particle size distribution, which also 
principally determine soil fertility status. 

A number of studies have shown the potential of 
NIR to predict soil texture [21-24] as well as soil 
organic carbon (C) [22, 24-26]. Other soil properties 
such as plant mineral nutrients and pH have been 
estimated with NIR in a number of studies with 
promising, though varying, results [17, 27-30]. NIR 
has also been related to potentially mineralisable N 
derived from aerobic and anaerobic incubations [22, 
23, 31-33] and has been used with promising results to 
estimate N uptake in crops [33-35]. Shepherd and 
Walsh [21] proposed an IR approach based on 
building soil spectral libraries and illustrated the 
approach for African soils. Recent development 
include, a  new NIR  sensing device  that is  able to  
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Fig. 1  Agro-ecological zones for the study area. 
 

collect in situ 3D spectral data of an entire soil profile, 
allowing objective and rapid soil classification [36]. 
Linker et al. [37] was able to determine nitrates from 
soil pastes using attenuated total reflectance (ATR) 
spectroscopy in the MIR spectral region. MIR is 
energetic enough to excite molecular vibrations to 
higher energy levels than NIR [38]. 

Although several workers have demonstrated the 
effectiveness of IR for characterization and 
determining soil properties [39-41] limited studies 
have demonstrated the applicability of IR as a soil 
nutrient diagnostic tool. The use of IR in soil 
applications remains poorly developed [40]. Many 
studies have focused on the prediction of soil 
properties through the processes of calibration and 
validation, centering the interest on simplifying soil 
analysis compared to the laborious and costly 
traditional chemical methods.  

The potential of IR as a technique that can be 
applied as a simple and rapid diagnostic tool for soil 
nutrient assessment and monitoring in small-scale 
farming systems has not been fully exploited. 
Therefore, this study sought to: (1) explore the 
applicability of IR as a soil nutrient diagnostic tool in 
smallholder farm surveys and (2) demonstrate its use 
in assessing the prevalence of soil nutrient 
deficiencies in small-scale groundnut production 
systems of western Kenya.  

2. Materials and Methods 

2.1 Study Area and Site Selection 

The study was conducted in Busia, Teso, Siaya, 
Homa Bay and Suba districts in western Kenya, 
characterized by low agricultural productivity (Fig. 1). 
The districts cover a wide range of distinct soil and 
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climatic characteristics, with agro-ecological zones 
(AEZ) ranging from, the Upper Midland 4 Coffee and 
Maize Zone (UM4), the Lower Midland (LM1) 
Sugarcane Zone and the drier 
Cotton/Sorghum/Sunflower Lower Midlands (LM3 to 
LM4) [42]. Western Kenya has diverse soil types with 
dominant soils including humic gleysols dominating 
the lower regions, with ferralo-orthic ferralsols, orthic 
acrisols and chromic luvisols most common in the 
higher altitude areas [42, 43]. The soils are generally 
poor with phosphorus as the main limiting 
macronutrient [1]. The farming system is typically 
dominated by intensive small-scale production 
enterprises, characterized by poor soil fertility and 
high poverty levels. 

2.2 Sample Collection and Analysis 

A random sample of 150 farms was taken from a 
list of 600 groundnut growers across five districts 
spanning agro-ecological zones (AEZ) LM1, LM2, 
LM3, LM4, and UM4. Soil sampling was conducted 
using a zigzag scheme on each groundnut field, where 
by five points per acre were considered appropriate, as 
described by Okalebo et al. [44]. From each sampling 
point a soil sample was extracted using an Edelman 
soil auger at 0 to 20 cm depth. The five soil samples 
from each field were composited for soil nutrient 
analysis. Prior to nutrient analysis, soils were air-dried 
and ground to pass through a 2 mm sieve.  

2.3 Spectral Measurements 

Diffuse MIR reflectance spectra (4,000-600 cm-1) 
were determined on the air-dried soil samples, after 
fine grinding, using a Bruker 
High-Throughput-Screening (HTS-XT) accessory 
attached to a Bruker Tensor 27 FT-IR spectrometer. 
Approximately 0.03 grams of soil were loaded into 
wells in aluminum micro-plates with four replicate 
wells per soil sample (Fig. 2) to enable MIR spectral 
measurement. An empty well was used for reference 
readings, taken before each sample reading using an  

 
Fig. 2 Aluminum micro plate used to scan ground soil 
samples. 
 

average of 32 scans. Absorbance was recorded at a 
spectral resolution of 4 cm-1 zero-filled to 2 cm-1. First 
derivative spectra with a smoothing gap of 3 points 
were used in all the analysis. 

2.4 Development of Soil Reference Data 

One hundred soil samples (25% of the original soil 
samples) were selected for reference chemical analysis. 
Spectra were ranked according to the Euclidean 
distance of the principal component space and 25 
samples were randomly selected from each of the 
quartiles, giving 100 samples in total. Chemical 
analyses were conducted using standard laboratory 
methods as reported by Shepherd and Walsh [22], for 
development of calibration models. Soil pHw was 
determined using an electrode pH meter from a 
saturated soil paste using a 1:2.5 soil/water ratio. 
Exchangeable calcium and magnesium were 
determined by extraction with 1 M KCl using a 1:10 
soil/solution ratio using an atomic absorption 
spectrometer (ASS) [45, 46]. The Olsen method (pH 
8.5, modified Olsen) was used to determine 
extractable phosphorus (P) using molybdate reaction 
for colorimetric detection with a flame emission 
spectrometer [45, 46]. Total carbon (C) and total 
nitrogen (N) were determined by the dry combustion 
technique using a CN analyzer [47]. Soil particle size 
distribution was determined using the Bouyoucos 
hydrometer method following Gee and Bauder [48]. 
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2.5 Calibration Models 

Chemical reference values were calibrated to the 
smoothed first derivative spectra using partial least 
square regression (PLSR) [19, 22, 23]. OPUS 
software version 6.5 (Bruker Inc) was used for the 
calibrations. Soil reference data was log transformed 
to achieve a normal distribution. The reliability and 
robustness of the calibration model was evaluated by 
the hold-out cross-validation procedure, using the 
coefficient of determination (r2) and the root mean 
square error of cross validation (RMSECV) calculated 
using the following equations [49-51]. 

TSS
SSR=r 2                (1) 

( )
p

iiCV,
pN

=i N
yy

=RMSECV
2

1

ˆ −∑        (2) 

Where SSR is the sum square of regression, and TSS 
is the total sum of squares, ŷCV, i and yi are the 
predicted and measured reference values respectively 
and Np is the number of samples tested. The default 
routine for automatic outlier detection in OPUS was 
used to omit outliers from the calibrations. This 
routine identifies outliers as samples whose predicted 
values significantly deviate from the reference wet 
chemistry values using an F-test (99% probability). 
The resulting calibration model was used to estimate 
(predict) the soil properties for all soil samples falling 
within the property domain of the calibration set.  

2.6 Development of Composite Soil Fertility Indices 

Soil properties are often inter-correlated and as a 
result, co-variation in soil properties was analyzed 
statistically through principal component analysis 
(PCA) using the Unscrambler software (Version 9.2). 
Principal component analysis (PCA) is a multivariate 
analysis in which data reduction is applied to develop 
new composite variables called principal components 
(PC) as a result of a linear combination of original 
independent variables [52]. The first few components 
typically explain most of the variation in the entire 
original data set and their loadings show the 

contributions of the soil variables to each PC. The soil 
variables were standardized by dividing each 
observation by its standard deviation for the variable 
so that all variables had an equal opportunity to 
influence the model regardless of the range in the data 
[49]. Hence the component scores are in standard 
deviation units above or below the model centre. The 
principal components were examined for their 
usefulness as composite soil fertility indicators (SFI). 
Assessment of the potential soil nutrient constraints 
was further assessed based on critical concentrations 
levels defined as the concentration that separates the 
zone of deficiency from the zone of adequacy [44].  

3. Results and Discussion  

3.1 Calibration and Validation Models 

Fig. 3 presents results of the IR calibration models 
in the MIR spectral region. Calibration models 
developed for pHw, C, N, Ca, Mg, clay, sand and silt 
gave good fits with cross-validated r2 values > 0.80. 
Models with highest r2 and lowest RMSECV are 
considered to be statistically the best and robust [50]. 
Numerous researchers have reported accurate 
predictions of C [53] and soil pH [22, 23, 29, 35]. This 
is consistent, considering that numerous bonds 
between C and O, N or H absorb light in this region 
while pH absorption has been attributed to O-H 
groups [53]. The good predictions of soil texture are 
consistent with previous studies that have yielded 
good results especially clay content [54-56]. Particle 
size effect on light transmission and reflection explain 
the accurate prediction for texture [55]. 

Only fair calibration was obtained with extractable P 
(r2 = 0.66) and were comparable to previous research 
findings form air-dried soil samples [54] but were 
better compared to those reported by Janik et al. [39] 
with r2value of 0.07 for extractable P. Good predictions 
are less frequent for soil P and exchangeable K as well 
as mineral N [54]. Daniel et al. [57] reported moderate 
results with r2 = 0.81 from air- dried soils for 
extractable P.  However, Maleki et al. [58], reported 
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Fig. 3  Cross-validated calibration models for principal soil nutrients: soil pHw, total carbon, total nitrogen, extractable 
phosphorus, and exchangeable calcium, magnesium and potassium. 
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better results (r2 = 0.88) for in situ spectral 
measurement of P from fresh wet soils. The goodness 
of fit probably depends on the strength of the relation 
of extractable P on soil mineralogy and organic matter, 
which largely determine spectral shape. The 
prediction of exchangeable K was low (r2 value of 
0.51) but comparable to reported values [21].  

Contradictory and often poor prediction results for 
extractable P and exchangeable K may have several 
causes, either relating to the reference methods (e.g., 
prediction of the cations varies with the extraction 
method [23], the nature of the study element (e.g., 
spectrally distinct P-containing compounds may 
variably contribute to soil P content [54]), its 
concentration (below the detection limits), or possible 
interaction with other components such iron oxides 
[54]. Increases in extractable P resulting from recent 
fertilizer additions would not affect soil mineralogy 
and organic matter and may thus not be spectrally 
detectable. The poor prediction could also be due to 
the soil test not relating well to soil P supply, in which 
case the efficacy of the soil test may still be in 
question. However, this can be validated through crop 
response trials.  

3.2 Characterization of Soil Nutrient Status in 
Groundnut Farms 

Fig. 4 represents box plots for predicted soil 
nutrient levels using MIR data in different 
agro-ecological zones with the critical limit levels as 
well as the optimum levels for soil pHw. There were 
significant differences (P < 0.01) between mean soil 
pHw values across the AEZs. There was far more 
variation within than between the AEZs. 

3.2.1 Soil pHw 

Soil pHw in the groundnut farms was within the 
recommended range (5.3-7.3) for optimum groundnut 
yields [59]. Soil pH is important as a soil fertility 
variable in groundnut production. Seventy nine 
percent of the farms had the soil pHw within the 
recommend range in all AEZs. Fifteen percent of the 

sampled groundnut farms in LM3 had high soil pH 
value > 7.3.  

Studies have shown that low soil pH significantly 
influences groundnut seedling survival and early 
growth stages [60]. Low soil pH (below 5.2) affects 
availability of P and molybdenum, which are 
important for early root development for legume crops 
such as groundnut [61]. Low soil pH results in high 
concentration of hydrogen ions (H+) in the soil that 
induce root injury and change the root membrane 
permeability and interferes with absorption and 
transport of both water and nutrients [61] of 
groundnut crops. Therefore low pH negatively affects 
groundnut growth that eventually leads to low yields. 
In particular, low soil pH, below about 5.3, is linked 
to aluminum toxicity [1]. One third of tropical soils 
have strong acidity with soluble aluminum levels that 
are toxic to most crop species [1]. The availability of 
exchangeable bases (Ca, Mg and K) is sub-optimal at 
low pH [62, 63, 65, 66]. Calcium is essential for 
proper groundnut pod development and production of 
high quality seed [62-66]. Lack of these essential 
basic cations could result to low groundnut yields. 
However, in these farms low soil pH was not a 
significant problem. 

3.2.2 Total Carbon 
Thirty percent of the groundnut farms had C 

concentration levels above the critical concentration 
level of 2%. Critical limits for nutrient supply and soil 
structure maintenance are expected to vary with soil 
texture and mineralogy. The agronomic limit for 
concentration of C recommended in Kenya for 
cultivated farms is 2% [44, 67] Universally, C is 
considered an important indicator of soil fertility as it 
plays a key role in nutrient availability and structure 
of soil. Therefore, low C concentration can indicate 
poor soil fertility and advanced land degradation [1]. 
However, threshold levels will vary with texture and 
mineralogy and there is need for development of local 
reference values.  

Traditionally, natural  fallow  was  one  of  the 
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Fig. 4  Box plots indicating distribution of soil fertility parameters in small-scale groundnut farms in Western Kenya. 
 

strategies for improving soil carbon and is still 
practiced even in this densely populated region, 
although land allocated to it is typically less than 10% 
of the cultivated area [68]. Its effectiveness in 
improving crop yields is, however, limited by the 
short duration (typically less than 1 year) of the 

practice in this densely populated area. Poorly 
responsive infertile soils require long term 
rehabilitation of soil carbon to build up soil fertility 
before crops respond to ensure efficient use of applied 
soil nutrients [69]. Farmyard manure is a common 
input, but its potential to meet the soil carbon stocks 
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for effective soil fertility is limited because it is 
usually not available in sufficient quantities on most 
small-scale farms, and it’s processing and application 
is labour demanding [69-71]. Additionally, crop 
residues that could be used for soil fertility 
improvement often have competing uses such as 
fodder for livestock or are used as fuel wood [72].  

3.2.3 Macronutrients-Nitrogen, Phosphorus, 
Potassium  

There was no significant difference across the 
AEZs in the mean N concentration levels. The LM1 
and LM2 zones had similar mean nitrogen 
concentration levels of TN 0.11% while LM3 had the 
lowest at 0.10% and LM4/UM4 had highest at 0.15%. 
Mean TN concentration was lower than the 
recommended critical limit value of 0.2% [44] in 75% 
of the sampled groundnut farms. The results indicate 
widespread limitation of N on groundnut farms.  

Nitrogen is not regarded as a major constraint for 
groundnut production due to the crop’s capacity to fix 
atmospheric nitrogen (N2) [73]. This is because, when 
inoculated with effective strains of Rhizobia, enough 
N is fixed through symbiotic relations with 
Brayrhizobium spp. [73]. However, in practice most 
researchers have reported that N fertilization is 
required for optimum groundnut yields in N deficient 
soils [64]. Nitrogen is important when plant demand is 
high in early stages of groundnut growth before 
nitrogen fixation has not yet started [74]. Uptake of 
nitrogen is most intensive during reproductive stages 
of groundnuts and immobilization of N from leaves to 
developing fruits occurs during this stage [73, 75]. 

Extractable P and exchangeable K varied widely 
across the AEZs. The levels of extractable P was below 
the critical level of 5.0 mg kg-1 for grain legume crops 
[44] in 67% of the sampled groundnut farms. The 
average extractable P levels in LM1, LM2 and LM3 

were 3.1, 3.8, and 4.0 mg kg-1.These results conform to 
previous reports that P is a major limiting soil nutrient 
in western Kenya [72, 76, 77]. The limitation of P 
availability can be due to high fixation of P of 

aluminum and iron oxides in tropical soils [1, 78]. 
Groundnuts preferably are grown on sandy soils with 
low amounts of clay, and phosphorus fixation in 
generally is not a problem [66, 78, 79]. Groundnuts 
have P-solubilising substances within cell walls that 
enable them to absorb iron-bound P in low-P soils [80], 
rendering this crop potentially more adapted to soils 
with low P. Cox et al. [66] observed that in most parts 
of the world groundnuts are grown in sandy soils that 
are deficient in phosphorus. However, these soils had a 
wide textural range with widespread P- deficiency.  

The exchangeable potassium was above the critical 
recommended limit of 0.2 cmolc kg-1 levels [44] and 
deficiency was detected in only 15% of the farms. 
Potassium is important for groundnut growth as it 
provides resistance to insect pests, diseases, water 
stress and promotes economic water utilization [66]. 
However, scientific findings have indicated that 
groundnut requires very little K for its growth and 
reproduction [60]. This is because groundnut roots are 
efficient in obtaining K from low available levels in 
soil due to the presence of solubilising substances 
within the root cell wall [80, 81]. There is need to 
locally refine critical soil test limits in relation to crop 
responses to applied K. 

3.3 Variation of Soil Nutritional Properties  

Principal component analysis (PCA) provided a 
holistic representation of variation in soil properties, 
taking into account correlations among soil properties 
[82]. Fig. 5 presents a principal component loading 
plots for the eight soil nutrients. The first and second 
principal component (PC1 and PC2) explained 74% of 
total variation for the soil nutrient data. Fifty percent 
of the total variance was explained by PC1 which was 
strongly influenced by C, N, Ca, Mg and particle size 
distribution, with P, K and pH having the least 
influence. The second principal component (PC 2) 
explained 23% of total variance and was most 
strongly influenced by P and pHw, and to a lesser 
degree, K. 
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Fig. 5 Principle component analysis (PCA) loading plot for soil variables. 
 

3.4 Soil Fertility Index and Its Interpretation for 
Assessment of Soil Nutrient Prevalence 

The first two PCs relate to soil functions that are 
important for groundnut and general crop production. 
PC1 and PC2 were thus renamed as soil fertility index 
(SFI), SFI1 and SFI2 respectively, with SFI1 taken to 
reflect basic soil fertility and SFI2 to reflect P 
availability and its pH dependence. The advantage of 
synthesizing several soil fertility variables into one 
indicator, apart from simplicity, is the inter-correlation 
among the variables is utilized to provide more robust 
predictions than if they are treated individually. The 
index rating system used here relies on statistical 

approach, which yields the relative assessment of soil 
fertility in small-scale groundnut farms. This index 
combines the quality control approach described by 
Larson and Pierce (1994) [82] and with scoring 
function approach of Karlen and Stott (1994) [83]. 

Fig. 6 shows the relationships between soil 
properties and the SFIs. The concentration of principal 
soil nutrient increases in a non-linear way as one 
move from a negative fertility score to positive values. 
The non-linear trend is useful because it is helps to 
distinguish sites that have high nutrient levels and that 
are not in need of amelioration from those that most 
probably do need amelioration.  
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Fig. 6  Plots of soil fertility variables against soil fertility indicators, SFI1 and SFI2. 
 

3.4.1 Interpretation of SFI 1 

An interpretation guide to the soil fertility 
indicators based on mean concentration value is 
shown in Tables 1 and 2. 

A guide on the interpretation of soil fertility scores 

based on SFI1 is given below presented in Table 1. 
When SFI1 value is -2 or below, (i.e. more than two 

standard deviations below the average) C, P, N, K and 
Ca levels are at very low levels. Although the 
following associations with SFI1 were weak, there was 
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Table 1  Interpretation of SFI1 in terms of mean values of soil nutrient concentrations, expressed in normal units for ease of 
interpretation. 

SFI1 Soil pH (units) C (%) N (%) Ca (cmolc kg-1) Mg (cmolc kg-1) P (mg/kg) K (cmolc kg-1) Sand (%) 
-5 5.40 0.18 0.03 0.71 0.01 0.00 0.10 16 
-2 5.70 0.61 0.08 0.83 0.50 0.97 0.18 29 
0 5.80 1.27 0.11 6.23 1.52 3.52 0.42 47 
2 6.70 1.93 0.16 9.64 2.30 4.70 0.55 59 
5 7.30 2.90 0.20 21.39 4.09 10.15 0.83 70 
 

Table 2  Interpretation of SFI2 with pH and concentration 
of extractable soil nutrients, expressed in normal units for 
ease of interpretation. 

SFI2 Soil pH (units) P (mg/kg) K (cmolc kg-1) 
-3 5.0 0.45 0.10 
-2 5.2 1.50 0.23 
0 6.0 4.19 0.43 
2 6.5 10.93 0.60 
3 7.2 15.70 0.85 

 

also a tendency at SFI1 < -2 for moderate acidity (< 
5.7), extremely deficient P levels (< 1 mg kg-1) and 
exchangeable K levels in the deficient range (< 0.2 
cmolc kg-1). Exchangeable Ca levels below 4.0 cmolc 
kg-1 are generally considered to be critically low in 
tropical soils. These soils will need major 
rehabilitation for good groundnut production. 39% of 
the sampled groundnut farms fell in this category. 

When SFI1 falls below a value of 2, available 
phosphorus becomes deficient for groundnut 
production (P < 5 mg kg-1). This reflects the effect of 
soil texture, organic matter and acidity on the 
availability of phosphorus. Between -2 and 2, 
P-replenishment is required with only maintenance 
dressings of K. Above 2, soils have good potential for 
groundnut production and only maintenance dressings 
of P and K may be required. However the associations 
of P and K with SFI1 were weak and it is better to 
examine SFI2 for confirmation of these limitations. 
Organic matter levels may also need to be maintained. 

When SFI1 value is 5 and above, C (2.90%), N 
(0.20%) and K (0.83 cmolc kg-1) are on average above 
the critical recommended levels and the soil pH (7.3) 
is near neutral and within the optimum range for 
groundnut productivity. 41% of farms fell in this 

category. 
3.4.2 Interpretation of SFI2 

Table 2 shows an interpretation a soil fertility 
scores based on SFI2 values. An interpretation guide is 
given below: 

When the score for SFI2 is -3 or lower P, pHw and 
K are sub-optimal. There is an indication of acid 
infertility (pH < 5.0) with extractable P being very 
deficient (0.45 mg kg-1) as well as K levels below the 
critical level of 0.2%. The prevalence of groundnut 
farms that fell within this fertility score of 2 and -3 
were 35% and would need a major soil nutrient 
replenishment programme (e.g. liming programme) 
for improved groundnut yields. 

Extractable P becomes moderate when SFI2 score is 
above 0 with a mean value of 5.2 mg kg-1 at 4, which 
is about the critical recommended level (5.0 mg kg-1). 
Soil pHw is within the optimum ranges recommended 
for availability of nutrients and for groundnut 
production. Exchangeable K is no longer deficient. 
Sixty percent of the groundnut farms had a soil 
fertility score of less 0 and would need extractable P 
and exchangeable K replenishment. 

At SFI2 score 2 or greater the P, pHw and K are 
optimum for maximum groundnut productivity. 
Management option for the groundnut farm will need to 
be maintaining the optimum levels. The prevalence of 
farms that with the SFI2 score of 2 or greater was 34%. 

The soil fertility scores provide useful soil fertility 
syndromes, which could be used to guide soil fertility 
management recommendations and field extension 
work. Table 3 shows the probability of a soil being 
above or below critical limits of pHw, C, N, P and K, 
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Table 3  Probability of soil fertility constraints for different ranges of soil fertility index (SFI). 

SFI1    Soil fertility index range 
Soil nutrient  Selected range  SFI1 < -3 SFI1 < -2 SFI1 < -1 SFI1 < 0 SFI1 < 1 SFI1 > 2 SFI1 > 3 
TC   < 1%  100 95 86 83 73 0 0 
                    
TN  < 0.1%  100 96 89 85 75 0 0 
                    
Exch. Ca  < 4 cmolc kg-1  100 100 86 79 70 0 0 
                    
Exch. Mg  < 0.8 cmolc kg-1  100 95 78 58 48 0 0 
           
SFI2                  
    SFI2 < -3 SFI2 < -2 SFI2 < -1 SFI2 < 0 SFI2 < 1 SFI2 > 1 SFI2 > 2 
Soil pH   pH < 5.3 units  - 83 54 41 29 0 0 
   pH > 7.3 units  - 0 0 0 1 21 20 
                    
Extr. P  < 5 mg kg-1  - 100 100 98 88 12 0 
                    
Exch. K  < 0.2 cmolc kg-1  - 83 53 44 33 8 0 
 

Ca and Mg at different SFI1 and SFI2 soil fertility 
scores. These guides better represent the variability in 
the data compared with the average values given in 
Tables 1 and 2. 

As SFI1 falls below -1 there is an increasingly high 
probability, of greater than 73%, of C being below the 
critical deficiency limit of 1.0%. The same pattern 
applies to N, and exchangeable cations (Ca and Mg). 
For example, at SFI1 < -2 there is 95% probability of 
being below the critical nutrient ranges selected. The 
probability of strongly acid soils (pH < 5.3) is 83% at 
SFI2 < 2 and there is a high probability of P-deficiency 
(< 5 mg kg-1) at SFI2< 1 rising to 100% at SFI2 values 
of < -1. Exch. K has 83% probability of being low 
when SFI2 drops below -1. 

When the soil fertility scores for both SFI indicators 
is high there is low probability of prevalence in 
deficiencies of key nutrients in groundnut production 
systems. For example when SFI1 is > 2, there is 0% 
probability of low C, low N, and Ca deficiency. At 
SFI2 > 1 there is 0% probability of having strong soil 
acidity, but 20% probability of having high pH (> 7.3). 

The soil fertility index framework provides a 

promising approach to linking soil IR spectral analysis 
to smallholder soil fertility recommendations [84]. 
MIR spectra of soil samples contain much information 
relevant to soil quality, and multivariate regressions of 
spectra from laboratory can accurately predict several 
soil nutrients prevalence. Many agricultural 
applications only require a classification of soil 
condition with respect to a critical test value for key 
properties to guide management decisions, similar to 
medical diagnostics. Shepherd & Walsh [22] were the 
first to propose the use of laboratory NIR analysis for 
the discrimination of soils falling above or below 
specific cut-off values for most properties related to 
soil fertility and further proposed the use of IR in 
diagnostic surveillance approaches (Shepherd and 
Walsh, 2007) [12]. They showed that soil samples 
could be roughly discriminated using classification 
trees even for properties like exchangeable K and 
extractable P, which are poorly predicted by 
regression models. This approach was further used by 
Cohen et al. (2005a) on an extensive data set of 
quality parameters for wetland soils, including soil 
microbiological attributes [85]. 
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4. Conclusions  

Strong relationships between soil reflectance and 
important soil nutrients (soil pHw, C, N, Ca and Mg) 
and texture were found across diverse smallholder 
groundnut farms, spanning a range of soil types and 
AEZs in western Kenya, demonstrating the 
fundamental viability and potential of infrared 
spectroscopy as a rapid diagnostic tool for soil fertility 
assessment in small-scale production systems. Soil 
fertility indexes based on the principal components of 
soil properties provided a useful interpretative guide 
for soil fertility management interventions. 
Predictions of low extractable P and exchangeable K 
were possible when the soil properties were combined 
into a soil fertility index due to the inter-correlation 
among the soil properties. The soil fertility indicators 
were predicted well from the MIR spectra.  

The soil fertility survey indicated that 56% of the 
groundnut farms had severe soil nutrient constraints 
for production and requires major soil fertility 
rehabilitation, especially with regard to exchangeable 
Ca, available P and organic matter. However, soil pHw 
was within the recommended ranges in most cases for 
optimum groundnut productivity. Only 43% of farms 
had adequate soil fertility levels for groundnut 
production that would require only fertility 
maintenance. 

This study demonstrates the utility of infrared 
spectroscopy as a diagnostic tool for rapid nutrient 
assessment in small-scale production systems. Further 
development and use of soil IR spectroscopy in large 
area soil fertility surveys is recommended towards 
evidence-based approaches for soil nutrient 
management. Further work is needed to directly relate 
crop responses to phosphorus and potassium to soil 
spectral properties.  
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